Самоподхват реле: Схема самоподхвата пускателя — советы электрика

Содержание

Схема самоподхвата пускателя — советы электрика

Запуск электродвигателя через ПМ

Как известно, электромагнитный пускатель представляет собой электрический коммутационный прибор, который используется для запуска, защиты и остановки электродвигателей, работающих по асинхронной схеме.

Главным рабочим элементом любого пускателя является электромагнитный контактор для сетей переменного тока.

Обратите внимание

Именно параметры контактора определяют характеристики пускателя, такие как номинальный ток и напряжение, коммутационная износостойкость и способность.

Кроме контактора магнитный пускатель может быть оборудован аппаратами защиты и кнопочной станцией.

Подключение магнитного пускателя в трехфазную сеть

Как следует из схемы подключения , трехфазное напряжение должно быть подано на клеммы ф1, ф2, ф3. Чтобы электродвигатель начал работать, нужно чтобы сработал магнитный пускатель (ПМ) и замкнулись его контакты ПМ1, ПМ2, ПМ3. Чтобы пускатель сработал, необходима подача напряжения, величина которого зависит от мощности катушки.

Катушка магнитного пускателя получает напряжение от ф1. Но перед этим оно проходит через замкнутый контакт тепловой защиты электромотора ТП1. После прохождения через катушку пускателя ток переходит к кнопке ПУСК, а также на блокировочный контакт  магнитного пускателя ПМ4.

Далее напряжение идет на замкнутую кнопку СТОП, после чего происходит замыкание на нуле.

Чтобы запустить электромотор, следует нажать кнопку ПУСК. Далее происходит замыкание катушки магнитного пускателя. В результате произойдет замыкание контактов ПМ1, ПМ2, ПМ3. Кроме того, замкнется контакт ПМ4.

Он даст возможность работы электромотора после отпускания кнопки ПУСК. Это явление называется самоподхват. Чтобы остановить электромотор нужно разорвать цепь катушки ПМ. Для этого нажимают кнопку СТОП (КН2).

При этом произойдет размыкание всех контактов ПМ1, ПМ2, ПМ3, ПМ4. Электромотор остановится до последующих запусков.

Чтобы обеспечить защиту от перегрузок, данная схема содержит тепловое реле (ТП). Электромотор при перегрузках сильно нагревается, как следствие повышенного тока. В результате может произойти его поломка. Это защитное устройство срабатывает при увеличении тока на фазах, происходит размыкание его контактов. В результате имитируется работа кнопки СТОП.

Схема включения в режиме реверса

Выше изложенная схема подключения подходит для электромоторов, работающих в постоянном режиме (циркулярки, насосы и пр.). А вот для агрегатов, которые должны менять направление вращения мотора нужно несколько иное подключение пускателя.

Это кран-балки, лебедки, открыватели ворот и др. Как видно из схемы на изображении, для подключения таких аппаратов необходимо два идентичных пускателя. Кроме того, необходима трехкнопочная схема. То есть должно быть две кнопки ПУСК и одна СТОП.

Важно

Иногда в таких схемах возможно применение и двухкнопочной схемы, но только в случаях очень кратковременных промежутков работы (3-10 с). В таком случае обе кнопки нормально открытые, а самоподхват не используется. В результате агрегат активизируется лишь во время нажатия кнопки.

Когда же она отпущена, аппарат не работает. В остальном же приведенная схема аналогична вышеуказанной.

Подключение ПМ в однофазную сеть

Через магнитный пускатель можно подключить и электромотор, предназначенный для однофазной сети. Для начала также необходимо определиться с типом пускателя. Они классифицируются согласно рабочему току.

Маркируются типы пускателей цифрами от 1 до 7. Чем больше цифра, тем на больший ток рассчитан аппарат. Кроме того, для работы в однофазной сети, катушка пускателя должна быть рассчитана на напряжение 220 В.

Согласно схеме, приведенной на рисунке, необходимо сделать ввод на силовые разомкнутые контакты. Электромотор необходимо подключить к выходу силовых контактов самого пускателя. Питание кнопок ПУСК и СТОП нужно брать с вводов силовых контактов пускателя.

Например, фаза должна быть подключена к кнопке СТОП замкнутого контакта. Далее она должна подключаться на кнопку пуска нормально разомкнутого контакта. А уже с контакта кнопки ПУСК на контакт катушки самого пускателя. Ноль же нужно подсоединить ко второму контакту катушки пускателя.

Чтобы зафиксировать включенной позиции пускателя, необходимо осуществить шунтирование блок контактом пускателя кнопки ПУСК нормально замкнутого контакта.

Как видим, подключение этого элемента как в трехфазную, так и в однофазную сеть, не является очень сложной задачей. Но все же, чтобы его осуществить, необходимо изучить теоретическую базу и подготовиться. В результате можно осуществить правильное подключение, не затратив много времени. Естественно, все описанные операции должны проводиться лишь квалифицированным электриком.

Видеопример подключения пускателя

Источник: http://proelectrika.com/podkluchenie-magnitnogo-puskatela-html/

Что собой представляет контактор, его особенности и схемы подключения

Контактор — это электромагнитный аппарат, предназначенный для коммутации, то есть включения и отключения, электрического оборудования. Он является двухпозиционным механизмом, который используется для частых коммутаций. Основными элементами его конструкции являются:

  1. Силовая контактная группа, которая может быть двух и трёхполюсной в зависимости от напряжения необходимого для работы исполнительного механизма.
  2. Дугогасительных камер, которые направлены на уменьшение дуги возникающей при разрыве электрического тока;
  3. Электромагнитного привода. Он предназначен для движения подвижной части силового контакта. В зависимости от конструкции он может быть рассчитан на разные напряжения как постоянного, так и переменного тока. Выполняется из П-образного, или Ш-образного сердечника;
  4. Системы блок-контактов, необходимой для сигнализации и управления оперативными цепями контактора. С помощью них можно подключить звуковую или световую сигнализацию показывающую позицию контактора, а также для цепи самоподхвата.

Отличительной особенностью конструкции электромагнита, работающего с переменным током, является наличие короткозамкнутого витка, который препятствует гудению его железа во время работы.

Если электромагнит работает от постоянного тока, то между рассоединяемыми частями его, должна присутствовать неметаллическая прокладка, которая препятствует залипанию сердечника.

Контактор отличается от магнитного пускателя или реле, только работой с более мощной нагрузкой, от величины её зависят и размеры самого аппарата. Очень важно выбрать нужный контактор соответствующий тому току, который он будет коммутировать.

Современные устройства серии КМИ обладают неплохими показателями надёжности и предназначены для общепромышленного применения. Благодаря своей конструкции имеют лёгкий способ крепления и небольшие габариты.

Принцип работы

При подаче напряжения на катушку электромагнита подвижная часть аппарата под воздействием электромагнитных сил приводится в движение и притягивается к неподвижной части. При этом происходит замыкание силовых контактов и подача напряжения на исполнительный механизм. И также при этом происходит движение и блок-контактов которые могут быть замыкающими или размыкающими.

Как подключить контактор

Особенности подключения светодиодных лент

При подключении контактора сразу нужно определиться с механизмом, который он будет включать. Это может быть двигатель, насос, вентилятор, нагревательные элементы, компрессоров и т. д. Главной особенность контактора, отличающего его от автомата, является отсутствие всякой защиты.

Поэтому продумывая цепи включения электрооборудования через контактор обязательно необходимо учесть ограничивающие ток и нагрев элементы. Для ограничения и отключения оборудования при коротких замыканиях и превышающих во много раз номинал нагрузках используются предохранители и автоматы.

От длительного незначительно превышения номинальных токов работающего оборудования применяются тепловые реле.

Совет

Для того чтобы правильно подключить контактор в схему нужно чётко понимать какие из контактов силовые, а какие из них вспомогательные, то есть блок-контакты. Также нужно посмотреть на номиналы катушки включения.

Там должны быть указаны напряжение его тип и величина, а также токи которые через неё протекают для нормальной работы.

Во время работы силовые контакты могут погорать, поэтому их необходимо регулярно осматривать и чистить.

Как подключить модульный контактор

Модульный контактор — это разновидность обычных таких же аппаратов для коммутации, только применяются они в основном для включения и отключения распределительных щитков дистанционно.

То есть включая его, подаётся питание на группу автоматов, каждый из которых, отвечает за свою определённую цепь. Устанавливается он на DIN — рейке.

Может коммутировать как цепи постоянного, так и переменного тока.

Подключение контактора через кнопку

Для подключения контактора через кнопку нужно изучить ниже приложенную схему. Она предназначена для пуска нагрузки, в данном случае двигателя, от контактора катушка которого рассчитана на 220 Вольт переменного напряжения.

В зависимости от напряжения стоит продумать её питание. Поэтому при покупке и выборе контактора стоит учесть этот нюанс. Так как если электромагнит будет рассчитан на постоянное напряжение, то понадобится именно такой источник.

При нажатии на кнопку пуск катушка электромагнита контактора получит питание и он включится. Замкнутся силовые контакты, тем самым подастся напряжение на асинхронный двигатель. Также замкнётся блок-контакт контактора К1, который подключен параллельно кнопке стоп.

Он называется электриками контакт самоподхвата, так как именно он подаёт питание на включающую катушку после того, как кнопка пуска отпускается.

При нажатии на кнопку стоп от электромагнита отключается питание, силовые элементы контактора разрывают цепь и двигатель отключается.

Подключение контактора с тепловым реле

Тепловое реле предназначено для недопускания длительных незначительных токовых перегрузок во время работы электрооборудования, ведь перегрев отрицательно сказывается на состоянии изоляции. Частые превышения температуры и токов приведут к её разрушению, а значит и к короткому замыканию, и выходу из строя дорогостоящего исполнительного элемента.

При повышении тока в цепи статора электродвигателя элементы теплового реле КК будут нагреваться. При достижении заданной температуры, которая может быть регулирована, тепловое реле сработает и его контакты разорвут цепь катушки электромагнита контактора КМ.

В целях безопасности нужно помнить, что работа в цепи контактора должна производиться при полном обесточивании его. При этом автомат питания должен быть заблокирован ключом или запрещающим плакатом от несанкционированного, или ошибочного включения. А также нельзя включать этот аппарат со снятыми дугогасительными камерами, это приведут к короткому замыканию.

Видео о подключении контактора

Особенности дифференциальной защиты силового оборудования

Источник: https://amperof.ru/elektropribory/chto-soboj-predstavlyaet-kontaktor-ego-osobennosti-i-shemy-podklyucheniya.html

Схема управления освещением – виды, назначение и способы реализации

Разбираем различные варианты управления освещением

В погоне за удобством и экономичностью схемы управления освещением постоянно совершенствуются. Сейчас уже освещением, да и вообще всем электрооборудованием в доме, можно управлять находясь на другом конце Земли.

Это конечно требует серьезных капиталовложений и участия узкопрофильных специалистов. Но есть схемы управления, которые вполне возможно реализовать с минимальным набором знаний по электротехнике и которые значительно облегчат вашу жизнь и позволят сэкономить. О этих то схемах мы и поговорим в нашей статье.

Схемы с ручным управлением

Все схемы управления освещением можно разделить на ручные и автоматические. Ручные схемы хоть и не обеспечивают автоматизации, но обеспечивают должный комфорт. И во многих случаях в соотношении цена и удобство имеют несомненное преимущество перед полностью автоматическими схемами.

Проходные и перекрестные выключатели

Проходные и перекрестные выключатели на практике применяются уже достаточно давно. Но сфера их применения может быть значительно шире. Ведь установка таких переключающих устройств позволяет управлять освещением из двух, трех (см. Как сделать управление освещением с трех мест) и большего количества мест.

Итак:

  • Проходной выключатель отличается от обычного выключателя тем, что он имеет один ввод и два вывода. Пусть ввод будет контактом номер 1, а вывода контактами номер 2 и 3. В одном положении выключателя замкнуты контакты 1 и 2, а во втором положении выключателя замкнуты контакты 1 и 3.
  • Перекрестный выключатель имеет два вводных контакта 1 и 2, а также два контакта вывода 3 и 4. В одном положении выключателя у нас замкнуты контакты 1 – 3 и 2 – 4, а во втором положении замкнуты контакты 1 – 4 и 2 – 3.
  • Такая особенность позволяет выключателям управлять освещением независимо от положения других выключателей в схеме. В связи с этим такую схему часто называют коридорная.
  • Как вы можете видеть на схеме, для управления с помощью двух выключателей можно применить только проходные выключатели. Для большего количества точек управления требуется применять уже и перекрестные выключатели.
  • Для того чтоб реализовать эту схему для двух выключателей следует произвести следующие переключения. Фазный провод от распределительной коробки подключить к вводу первого выключателя.
  • После этого соединяем между собой вывода 2 и 3 обоих выключателей. А к вводу второго выключателя подключаем наш светильник. Осталось подключить нулевой провод к светильнику напрямую от распределительной коробки и наша схема готова к работе.
  • Для создания подобной схемы на три и большее количество выключателей между двумя проходными следует поставить перекрестные выключатели. В этом случае мы от выводов 2 и 3 первого проходного выключателя подключаем провода к вводам 1 и 2 перекрестного выключателя. А от выводов 3 и 4 перекрестного выключателя подключаем к выводам 2 и 3 проходного выключателя. В остальном схеме остается без изменений.

Схемы на импульсном реле

Но будем откровенны схемы проходных и перекрестных выключателей отживают свое. С появлением импульсных реле такие схемы кажутся через-чур сложными и недостаточно надежными в связи с большим количеством контактов.

Проще использовать импульсные реле, которые удобнее для управления освещением и схемы которых значительно проще.

  • Принцип работы импульсного реле сводится к следующему. При подаче питания на катушку силовые контакты изменяют свое состояние на противоположное и фиксируются в этом состоянии. Это позволяет кратковременной подачей напряжения в 0,1 – 0,5 сек., включать и отключать освещение.
  • Так как фиксация положения выключателя в этом случае не требуется, то для работы с импульсным реле применяют обычные кнопки. Такие как для дверного звонка. Простое нажатие на кнопку включает освещение. Повторное нажатие на эту или любую другую кнопку в цепи отключает его.
  • Кроме срабатывания от импульсов в большинство реле имеется функция только отключения и только включения освещения. Для некоторых схем это может стать очень полезным свойством.
  • В связи с таким богатым функционалом реле, он имеет аж шесть контактов. Обычно управляющие вывода расположены сверху, а силовые снизу. Но, к сожалению, единой системы тут нет, и каждый производитель изгаляется так, как сам считает правильным. То же самое и с обозначение контактов. Поэтому дабы не быть голословными мы возьмем принцип обозначения одного из самых распространенных производителей. В качестве примера выступает реле – РИО-1.
  • Если вы собрались подключать импульсное реле своими руками, то прежде всего собираем управляющий сигнал. Для этого фазный провод от распределительной коробки подключаем к каждому выключателю без фиксации. Вывода от выключателей собираем последовательно и подключаем к контакту «Y» на импульсном реле.
  • Но для работы реле нам необходимо наличие питание на катушке. Подводим это питание присоединением к клемме «11» фазного провода от распределительной коробки, а к клемме «N» нулевого провода.
  • Теперь от клеммы «14» берем фазный провод к нашим светильникам. Нулевой соответственно прокладываем от распределительной коробки. Все наша схема полностью работоспособна.
  • Если же у вас есть желание установить кнопку, которая будет при любом нажатии только включать освещение, то данную кнопку подключаем к контакту «Y1» импульсного реле. Соответственно кнопку, работающую только на отключение света, подключаем к контакту «Y2» реле.

Подключение освещение через пускатель

Согласно п.6.2.10 ПУЭ от одного группового автомата запрещено запитывать более 20 ламп или многоламповых светильников. Но иногда необходимо одноразово включить сразу большее число осветительных приборов.

В этом случае цепь управления освещением и схема должна предусматривать установку пускателя или контактора.

Итак:

  • Пускатель представляет собой катушку, магнитопровод и систему связанных с ним силовых и вторичных контактов. Магнитопровод разделен на неподвижную и подвижную часть. При подаче напряжения на катушку подвижная часть магнитопровода подтягивается к неподвижной. При этом изменяют свое положение и контакты. При исчезновении напряжения на катушке, магнитопровод под действием пружин отпадает, соответственно отпадает и контактная часть.
  • Для управления пускателем обычно используется кнопочный пост. На нем в обязательном порядке должно быть, как минимум две кнопки «вкл» и «откл». Кнопка «вкл» имеет нормально разомкнутые контакты, а кнопка «откл» нормально замкнутые.
  • Для того чтоб освещение управлялось через контактор или пускатель нам, как и в схеме импульсного реле, следует собрать отдельно силовую схему и отдельно схему управления. Силовая схема собирается достаточно просто. Для этого к вводным силовым контактам достаточно подключить фазные провода от групповых автоматов, а к выводам пускателя фазные провода, идущие непосредственно к светильникам.
  • А вот со схемой управления все немножко сложнее. Для этого берем фазный провод от одного их групповых автоматов и подключаем его к одному из контактов кнопки «откл». От второго контакта кнопки «откл» присоединяем провод к первому контакту кнопки «вкл». От второго контакта кнопки «вкл» пробрасываем провод к фазе катушки пускателя. Второй вывод катушки пускателя подключаем к нулю.
  • Казалось бы, вот и все. При нажатии кнопки «вкл» на катушке появится напряжение и пускатель сработает. Но дело в том, что как только мы отпустим кнопку «вкл» пускатель отпадет. Поэтому нам необходима так называемая схема самоподхвата.
  • Суть данной схемы сводится к следующему. У пускателя кроме силовых, есть вторичные контакты, которые повторяют движение силовых. Там есть нормально замкнутые и нормально разомкнутые контакты.
  • Для реализации схемы самоподхвата берем фазу с катушки пускателя. Ее подключаем на нормально разомкнутый контакт пускателя. К второму выводу этого контакта подключаем провод, который идет к кнопке «откл». Здесь подключаем его к контакту между кнопкой «вкл» и «откл». Теперь пускатель будет работать даже после отпускания кнопки «вкл».
  • Работает данная схема таким образом. Через нормально замкнутый контакт кнопки «откл» напряжение подается к кнопке «вкл». При нажатии кнопки «вкл» происходит подача напряжения на катушку и пускатель срабатывает. При этом замыкаются вторичные контакты пускателя, тем самым шунтируя кнопку «вкл». При нажатии кнопки «откл» напряжение снимается с катушки, пускатель отпадает, и схема возвращается в исходное состояние.

Схемы с автоматическим управлением

Но как бы то не было схемы ручного управления требуют участия человека. А это не всегда возможно или комфортно.

Значительно удобнее если освещение будет включаться самостоятельно по определённым факторам. Для это используется дистанционное управление освещением и схема которая предполагает наличие специальных датчиков.

Схема с датчиками освещенности

Для более рационального расходования электроэнергии применяют так называемые датчики освещённости. Они позволяют включать освещения только при снижении уровня естественного освещения до заданных параметров.

При этом они совершенно не требуют участия человека, а их обслуживание сводится к периодической протирке фотоэлемента датчика от пыли.

Принцип работы датчика освещённости сводится к фиксации уровня освещённости специальным фотоэлементом. При достижении заданных параметров он срабатывает и через силовой контакт подает напряжение к сети освещения. Регулировка необходимого уровня освещённости реализуется за счет специального регулятора на наружной поверхности корпуса.

Подключение датчика освещённости не требует особых знаний:

  • Прежде всего подключаем фазу и ноль к соответствующим выводам датчика. Они могут быть обозначены как «L» или «L1» и «N». Это подключение обеспечивает работоспособность устройства.

Схемы подключения датчика освещенности

  • От третьего, пока не задействованного вывода, подключаем светильники. Ноль для светильников берется помимо датчика, непосредственно с распределительной коробки.

Схема управления наружным освещением, для которых такие датчики используют наиболее часто, зачастую предполагает подключение от датчика не светильников, а пускателя освещения.

В этом случае, при снижении освещённости срабатывает датчик, затем пускатель и подается напряжение к сети освещения, которая управляется либо другими датчиками, либо выключателями. Это обеспечивает условие включения освещения только при недостаточной естественной освещённости.

Схема с таймером

В некоторых случаях освещение необходимо включать по факту наступления определённого времени. В этом случае схема автоматического управления освещением оснащается таймером.

Итак:

  • Таймеры бывают двух видов аналоговые, с часовым механизмом, и электронные, принцип действия которых схож с принципом действия электронных часов. Кроме того, таймеры разделяются на устройства реального времени и устройства обратного отчета.
  • Устройства реального времени ведут счет времени как обычные часы и при наступлении заданного времени выполняют заданные действия – включение или отключение электрооборудования.
  • Устройства обратного счета зачастую имеют строго регламентированный временной отрезок, в период которого возможно его срабатывания – час, сутки, неделя. В данном случае можно задать действия на не ограниченное время, а на данный временной промежуток. И таймер будет вести учёт времени до момента срабатывания.
  • Сами по себе таймеры практически не выпускаются. Зачастую они интегрированы с другими устройствами. Это могут быть автоматические выключатели, розетки, выключатели, пускатели или другое оборудование.
  • Современные таймеры имеют возможность программирования не на одно, а на несколько действий независимых друг от друга. Кроме того, современные электронные таймеры могут управлять сразу несколькими устройствами. Но такие устройства чаще всего применяются в схемах освещения «умный дом» и других высокотехнологичных схемах как на видео, создать которые без помощи профессионалов может быть затруднительно.

Схема с датчиками движения

Самую высокую степень экономии электроэнергии дает схема управления с датчиками движения. Применение данных устройств позволяет включать освещение только на время нахождения человека в комнате или зоне ответственности.

При этом от самого человека не требуется никакого участия. Даже самые совершенные схемы управления на микроконтроллере используют данный тип датчиков для управления освещением.

  • Принцип работы датчика движения основан на фиксации инфракрасного излучения, которое излучает человек. При этом дабы фиксировать не только наличие излучения, но и движение человека имеется специальная оптическая система. По мере движения человека фиксация излучения в этой системе производится разными элементами.
  • Количество элементов срабатывание которых приведет к срабатыванию датчика регулируется. Поэтому при малейшем движении для срабатывания датчика достаточно фиксация двумя элементами, а для более грубой настройки может потребоваться фиксация тремя или четырьмя элементами.
Номинальные параметры датчика движенияПри выборе датчика движения следует обратить внимание на целый ряд параметров. Прежде всего это электрические номинальные данные.

В первую очередь нас интересует напряжение питающей сети, которое должно быть 220В, а также номинальный ток первичной цепи.

Он может быть 6, 10 или 16А. Чем выше это значение, тем большее количество ламп мы можем запитать от датчика.

Регулировка датчика движенияБольшинство современных датчиков движения имеют возможность регулировки уровня освещенности для срабатывания, время работы датчика после срабатывания и выбор чувствительности срабатывания.
Радиус срабатывания датчика движенияВажным параметром является угол работы датчика. Большинство современных моделей способны обеспечить угол работы до 180⁰. А для датчиков потолочной установки нормальным является охват зоны в 360⁰.
Зависимость датчика движения от погодных условий и места установкиВо время настройки датчиков движения, а также их работы следует помнить, что плохие погодные условия значительно снижают их чувствительность.

Кроме того, установка посторонних предметов или стекла перед датчиком может полностью ограничить его работу. Это же правило касается и климатического оборудования, установленного рядом с датчиком.

Конструкция датчика движенияТак же важным параметром является уровень защиты датчика движения от проникновения влаги и пыли. Если для установки внутри помещений можно выбрать приборы без защиты, то для наружной установки лучше выбирать изделия с IP 44 и выше.

Итак:

  • Подключение датчика движения достаточно похоже с подключением датчика освещенности. Точно так же для работы устройства ему необходимо наличие фазы и нуля. Для питания же светильников, подключенных к нему, используется третий провод. Для сети освещения он является фазным.
  • Кроме того, достаточно интересным решением является возможность их параллельного подключения. Например, у нас есть коридор с несколькими входами. Напротив каждого из них ставим датчик движения, и при срабатывании хотя бы одного из них включается освещение всего коридора. Это так называемая логика «или».
  • В виду широкого использования современные датчики движения имеют более широкие возможности чем просто фиксация движения. В большинстве случаев они содержат встроенный таймер, а иногда и датчик освещённости.
  • Это позволяет значительно расширить спектр их использования и повысить многозадачность. Например, можно задать условием срабатывания понижения уровня освещенности до определённой величины и появление движения. При этом в сработанном состоянии датчик должен находится столько-то минут, после прекращения движения в зоне его действия.
  • Конечно это более удобно, но зачастую увеличивает конечную стоимость всей схемы освещения. Поэтому наша инструкция для удешевления проекта советует интегрировать несколько разнообразных автоматических и ручных схем друг с другом.

Вывод

Как видите современная схема дистанционного управления освещением позволяет полностью исключить человека или минимизировать его участи. Но понятное дело, чем более совершенная схема, тем выше ее конечная стоимость.

Поэтому далеко не во всех случаях целесообразно расходовать большие средства на автоматизацию систем управления. Иногда можно обойтись и старым добрым выключателем. Но решать конечно вам, тем более что теперь вы знаете как это все смонтировать без посторонней помощи.

Источник: https://Elektrik-a.su/osveshhenie/obshhaya-chast/shema-upravleniya-osveshheniem-384

Реле с самоподхватом 12в схема

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.

5. Основные параметры электромагнитных реле.

Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.

Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.

1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.

Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:

2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.

Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.

3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.

4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.

Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.

5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).

Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.

Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.

6. Подключение промежуточных реле.

Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.

Разберем подключение реле на примере простых схем.

6.1. Схема с нормально разомкнутым контактом.

Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.2. Схема с нормально замкнутым контактом.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.

При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.

В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.

При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.

Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.

6.4. Схема с гальванической развязкой.

На схеме показаны две цепи – управляющая и исполнительная (силовая):

управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;

исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.

6.5. Схема технологической сигнализации.

А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.

Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.

Рассмотрим упрощенную схему с одним контролируемым параметром.

Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.

При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.

Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.

Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.

И в дополнение к статье видеоролик о промежуточных реле.

Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

В этой статье я приведу несколько примеров реле применяемых в автомобилях, их отличия и некоторые варианты использования.

Отечественные реле и их характеристики:

  1. Диапазон электропитания: 8. 16В.
  2. Номинальное напряжение: 12В.
  3. Ток управления: не более 0,2А.
  4. Напряжение срабатывания: не менее 8,0В.
  5. Напряжение отпускания: 1,5. 5,0В.
  6. Максимальный ток в силовой цепи: 30А.
  7. Активное сопротивление обмотки: 80±10 Ом

90.3747-10 в пластмассовом корпусе без фланца крепления;

90.3747-в пластмассовом корпусе с фланцем крепления;

113.3747-10-в металлическом корпусе без фланца крепления;

Силовые реле, импортные и отечественные, выполняют одинаковую функцию.

Основное их различие в качестве и коммутируемых контактах. Существуют реле с четырьмя и пятью контактами, но все реле имеют контакты обмотки, это 85 и 86 контакты.

В некоторых импортных реле между этими контактами устанавливают гасящие резисторы или диоды, а иногда и то и другое. Эти элементы используют для защиты управляющих цепей от перегрузок возникающих в момент размыкания цепи катушки реле.

На следующем рисунке изображено оригинальное реле, используемое в автомобиле Audi с встроенным гасящим резистором.

Если на корпусе реле изображен значок диода, значит при его включении необходимо соблюдать полярность на контактах управления. Часто эти диоды устанавливают в разъеме, (ответная часть — колодка или soket) в который вставляется реле.

Схема реле содержащее диод и подключение его обмотки:

При подаче напряжения на контакты управления реле срабатывает и замыкает или размыкает электрическую цепь силовыми контактами. Силовые контакты маркируются всегда как 30, 87 и 87а. 30-й контакт всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а. Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87. 87а или 87 контакт могут отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.

Необходимо внимательно следить за маркировкой контактов на реле, т.к. некоторые производители выпускают реле с не стандартным расположением контактов. На рисунке изображено реле фирмы BOSCH, другим расположением контактов. Контакты 30 и 86 поменяны местами.

Реле используют в тех случаях когда исполнительное устройство потребляет больший ток (до 30-40 ампер), чем способен выдать управляющий выход (потребление катушек реле как правило не превышает 200миллиампер). Примеры использования реле для коммутации различных устройств приведены в конце статьи.

Важно отметить, если реле долго эксплуатировалось при коммутации силовых цепей в предельных режимах, то искра проскакивающая при замыкании или размыкании контактов создает нагар между контактами и из-за этого возможно исполнительное устройство не будет работать или будет работать не корректно. Плохой контакт выделяет на себе тепло. При этом в силовых цепях может повышаться потребляемый ток (при плохом контакте ток электродвигателя или лампочки становится импульсно-пусковым), что влечет разогрев мест плохого контакта в коммутируемых цепях и как следствие оплавление пластмассовых деталей крепления контактов. При оплавлении деталей крепления, контакты смещаются и добавляется процесс искрения, что еще больше разогревает место контакта. На рисунке показан появляющийся нагар на контактах отечественного реле. Переключающий контакт отогнут для наглядности. Белые точки — пробой нагара искрой при подключении потребителя, через эти места ответный контакт может привариваться, оставляя подключенным потребитель.

Как наиболее надежные и доступные в продаже, себя зарекомендовали импортные реле под маркой Saturn и San Hold, применяются так же реле других производителей.

Напротив — отечественные реле неудовлетворительны по таким параметрам, как герметичность и износостойкость.

Важно так же покрытие выходных контактов и ответной части (разъема или сокета). Наиболее удачное покрытие контактов реле — лужение. Примеры окисляющихся контактов реле.

Схемы инверсии сигналов и управления нагрузкой.

Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях.

Так же данные схемы могут использоваться для умощнения сигнала при подключении нагрузки управляемой дополнительным каналом сигнализации. При подключении соленоида замка багажника, управления дополнительным замком капота, дополнительных противотуманных фар, дополнительных звуковых сигналов или при подключении другого электро — оборудования, необходимо устанавливать защитный предохранитель в силовой цепи (+)12Вольт (правая схема).

Схема подключения центрального замка при дополнительно установленном активаторе (активаторах) к сигнализациям, не имеющим встроенных реле (интерфейса) центрального замка.

Схема блокировки двигателя с самоподхватом (самоблокировкой).

Для управления реле блокировки можно использовать секретную кнопку, пару геркон-магнит или штатный орган управления выдающий сигнал управления положительной полярности при включенном зажигании (например силовой сигнал на стеклоподъёмнике или обогрев заднего стекла). При управлении кнопкой или герконом, диод D2 не нужен. При управлении штатным органом для разблокировки, кнопка или геркон не нужны, диод D2 необходим.

Многие современные радиоэлектронные устройства оснащаются небольшими реле, которые, в свою очередь, коммутируют другие, в том числе и сетевые узлы и приборы. А вот как управлять самими реле — мы и разберёмся на примере трёх схем. Все они довольно просты — меньше десяти деталей.

Схема драйвера управления для реле

Технические характеристики:

  • Питание драйвера — 12 В на 40 мА
  • Выход реле — 5 A на 230 В
  • Управление входа — 2-15 В постоянного тока
  • Светодиодный индикатор показывает состояние реле
  • Габариты платы 27 x 70 мм

Это одноканальный релейный драйвер, подходящий для разнообразных проектов. Очень простой и удобный способ взаимодействия реле для переключения мощных потребителей, которое само управляется слабым током и напряжением.

Схема управления реле одной кнопкой

Данная электрическая схема управления реле выполняется всего одной кнопкой с одной контактной группой на замыкание и без фиксации. Работает схема следующим образом: при подаче питания конденсатор С1 через резистор R1 и замкнутые контакты К1.1 заряжается практически до напряжения питания. При нажатии на кнопку S1 через её замкнувшиеся контакты, через замкнутые контакты K1.1 и резистор R1 напряжение питания подается на катушку реле К1, что приводит к включению реле. Контактная группа К1.1 переключается и теперь питание на реле поступает через резистор R1 и замкнувшиеся контакты К1.1. На время пролёта контактов реле при переключении питание катушки осуществляется за счёт накопленного заряда конденсатора С1.

После замыкания контактов реле конденсатор С1 разряжается через резистор R2. При следующем нажатии на кнопку S1, происходит заряд конденсатора С1 из-за чего напряжение на катушке реле падает и происходит размыкание её контактов. Схема возвращается в исходное состояние. Элементы R1 и C1 образуют цепь с постоянной времени в 150 миллисекунд, что достаточно для срабатывания большинства типов электромагнитных реле.

Обратите внимание, что резистор R1 является подстроечным, и следует подбирать под каждое реле индивидуально.

Схема реле с управлением одной кнопкой

Эта схема представляет собой аналог кнопки с фиксацией. Вся конструкция очень проста и реализована на самом реле и одном транзисторе. При первом нажатии на кнопку транзистор открывается током разряда конденсатора, реле замыкается и блокируется по базовой цепи транзистора своими же контактами. Конденсатор при этом отключается от питания и, если отпустить кнопку, быстро разряжается через диод и резистор. Если теперь нажать на кнопку вторично, то транзистор запрется и отключит реле. Естественно, реле должно иметь вторую пару контактов.

Правда если надо таким образом управлять включением сетевого питания, то возникает проблема, заключающаяся в том, что в начале схема обесточена. В телевизорах при включении их от пульта или в компьютерах с корпусами АТХ это решается тем, что при подключении шнура питания подобная схема сразу получает питание, а уж включать основное питание будем позже. Что касается твердотельных реле — информация по ним находится в этой статье.

Простая схема реле с самоподхватом для фиксированного замыкания электрических контактов при кратковременном срабатывании датчика движения, вибрации, удара, толчка.

 

 

 

 

 

Вашему вниманию очень простая схема, которая позволит зафиксировать кратковременное срабатывание (замыкание на его выходных выводах) датчика, собранная на обычном реле. То есть, допустим у нас имеется механической датчик вибрации, удара, толчка, который при своем движении кратковременно замыкает электрические контакты внутри себя. Если такой датчик подключить к исполняющему устройству, например звуковой сигнализации, то работа такой сигнализации также будет кратковременной (буквально доли секунд). Возникает вопрос, как можно сделать так, чтобы данное кратковременное срабатывание датчика обеспечивало фиксированное замыкание контактов, что управляют исполняющим устройством?

 

Наиболее простым решением будет использование обычного реле, работающее по схеме самоподхвата. Это схема обычного электромагнитного пускателя, что применяется в электрике для пуска электродвигателей, но вместо контактора используется обычное реле. Это реле должно иметь на себе как минимум две группы нормально разомкнутых контактов. На рисунке они обозначаются как К2 и К3. Также схема содержит в себе стоповую кнопку, в роли которой можно использовать любой нормально замкнутый переключатель. То есть, его контакты должны быть замкнуты и лишь при нажатии на этот переключатель они должны размыкаться.

 

 

 

 

Ну и к этой схеме с реле и стоповой кнопкой подключается сам датчик, не имеющий фиксированного замыкания при своем срабатывании. Допустим я собрал своими руками простой датчик движения (толчка, удара, вибрации, колебания, тряски), он обозначается на схеме К1. Его я и подключил к этой схеме реле триггера. Причем его подключение происходит параллельно одному из контактов реле, что обеспечивает самоподхват этого реле. При подачи на схему питания, которое должно соответствовать напряжению питания катушки самого реле, в начальный момент ничего не происходит. Так как на катушку не поступает напряжение из-за разомкнутых контактов К1 и К2, но как только датчик К1 срабатывает, хоть и кратковременно, цепь замыкается и катушка реле срабатывает. В итоге замыкаются контакты реле и происходит самоподхват. Датчик уже может находится в разомкнутом состоянии, а реле продолжит работать. Ну, а ко второму контакту реле К3 уже можно подключать какое-нибудь исполнительное устройство, например звуковую сигнализацию, что будет оповещать от срабатывании датчика движения.

 

Для отключения схемы и размыкания исполнительных контактов К3 достаточно нажать на стоповую кнопку S1. Цепь разорвется и реле отключится. Чтобы опять включить схему нужно снова воздействовать на датчик движения. Но не все так идеально, как может показаться. Есть в схеме и свои недостатки и нюансы. А именно, для того чтобы данная схема нормально работала нужно чтобы было достаточно чувствительное реле с хорошим быстродействием своего срабатывания. Именно в этом случае схема будет нормально и надежно работать. Если использовать более мощные и медленные реле, то кратковременного срабатывания датчика не будет хватать для нормального подхвата самого реле.

 

Другим моментом, из-за которого схема может работать ненормально, это несоответствие токов, что протекают через датчик. Например, если использовать самодельный датчик, в котором используются тонкие провода и контакты, что срабатывают внутри него, то при больших токах в схеме может быть обгорание контактов, их залипание, нечеткое срабатывание и т.д. Так что обязательно учитывайте – величина тока должна быть изначально учтена для всех контактов и цепей схемы, принадлежащих данному устройству.

 

В приведенном рисунке схемы исполняющие контакты реле замыкают цепь для светодиода, который подключен последовательно с резистором на 1к. При срабатывании реле будет зажигаться светодиод, тем самым сигнализируя рабочее состояние этой схемы. Хотя если вы хотите более стабильную работу схемы, которая бы обеспечивала нормальный подхват реле даже при использовании медленных и мало чувствительных, то тогда лучше использовать схемы триггеров на микросхемах.

 

Видео по этой теме:

 

 

P.S. Причиной плохой работы медленных и мало чувствительных реле в этой схеме является наличие на катушке явления индукции. Как известно, в начальный момент при подачи на катушку напряжения она как бы сопротивляется прохождению тока через нее и тем самым препятствует нормальной работе датчика, что замыкает свои контакты на короткий промежуток времени и не имеет четкой фиксации своего замкнутого состояния. Решением этой проблемы будет вариант с добавлением усилительной схемы с небольшой задержкой времени присутствия напряжения на катушке реле. Даже наличие обычного конденсатора, стоящего параллельно катушке может улучшить ее работу.

 

Схемы включения реле и пускателей

Схемы включения реле и пускателей

Программа КИП и А

Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.

Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.

Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Простая схема управления реле / пускателем

Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.


Рисунок 1. Простая схема управления реле / пускателем


K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами.
SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом
SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом
K1.1 – нормально разомкнутый контакт реле K1
K1.2…K1.4 – контакты реле K1 для коммутации силовых цепей

Принцип действия

При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.

Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.

При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.

Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.

Схема управления реверсивным электродвигателем

Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.


Рисунок 2. Схема управления реверсивным электродвигателем


K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым.
SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом.
SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом

Принцип действия

При нажатии кнопки SB1Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.

Оно замыкает свой контакт самоподхвата K1.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

При нажатии кнопки SB2Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».

Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

Замечания.

Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).

 

РЕЛЕ

   В этой статье мы поговорим о Реле. Реле это устройство, созданное для коммутации электрических цепей, которое может осуществляться в устройствах автоматики даже без помощи человека. Рассмотрим поподробнее, какие существуют типы, и для каких целей служат реле. Самое распространенное электромагнитное реле может быть в двух положениях: включено и отключено. Состоит реле из контактов, катушки, подвижного якоря, толкателя контактной системы, выводов реле. Фото катушки магнитного пускателя (реле), изображено на нижеприведенном рисунке, все катушки сделаны по одному принципу:

Катушка магнитного пускателя

   Катушка представляет собой медный провод, намотанный на оправке, и представляет собой, в простейшем случае цилиндр, внутри которого находиться сердечник электромагнита. При подаче напряжения на выводы катушки, она втягивает в себя сердечник по принципу электромагнита, при этом толкатель двигает (толкает) подвижную систему контактов, часть из которых при этом замыкается, а часть размыкается.

Рисунок строение реле

   Далее изображено схематическое обозначение основных деталей, из которых состоит реле и которые необходимы нам для понимания его работы:

Схематические обозначения деталей реле

 — Под цифрой один изображена катушка электромагнитного реле, так она обозначается на принципиальных схемах.
 — Под цифрой два изображен свободно разомкнутый контакт.
 — Под цифрой три изображен свободно замкнутый контакт. 

   А здесь изображены катушка и группы контактов вместе:

Схематическое обозначение катушки и контактов

   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Свободно замкнутые, это те контакты, которые в отсутствие напряжения на катушке реле находятся в замкнутом состоянии. Свободно разомкнутые контакты соответственно в отсутствие напряжения находятся в разомкнутом состоянии. Реле бывают рассчитанные на работу, как от переменного, так и от постоянного тока. На фотографии можно видеть маломощное электромагнитное реле:

Фотография электромагнитного реле

   Электромагнитные реле выпускаются на разную мощность, начиная от низковольтных малогабаритных реле, магнитных пускателей осуществляющих управление двигателями и цепями управления станков, до мощных контакторов (сделанных тоже по типу реле) осуществляющих коммутацию значительных токов и позволяющих управлять работой больших двигателей в насосных станциях, котельных и других объектах электроустановок. На рисунке ниже изображен магнитный пускатель серии ПМЕ:

Магнитный пускатель ПМЕ

   Подобные магнитные пускатели имеют катушку, рассчитанную на напряжение питания от 110 до 380 вольт для работы от сети переменного тока. Магнитные пускатели помимо силовых контактов, рассчитанных на большую нагрузку, имеют вспомогательные свободно замкнутые и свободно разомкнутые контакты. Вспомогательные контакты используются в цепях управления устройством, например токарным или сверлильным станком. Ниже на рисунке схема нереверсивного пуска электродвигателя.

Схема нереверсивного пуска электродвигателя

   В левой части, как нам известно, из приведенных выше схематических изображений, изображены под обозначением КМ три спаренных для одновременного включения силовых контактов включения электродвигателя. Прямоугольник, обозначенный КМ, это как мы знаем, обозначение катушки пускателя. Свободно разомкнутый контакт, находящийся под обозначением кнопки SBC (которая, кстати, является кнопкой включения электродвигателя) служит контактом так называемого «самоподхвата питания”. Рассмотрим вкратце эту схему, являющуюся типичной схемой нереверсивного включения двигателя (по такой схеме устроены приводы наждаков на производстве”:

Наждачная бабка фото

   После нажатия кнопки SBC питание подается на катушку пускателя (реле) КМ. Замыкаются силовые и вспомогательный контакт магнитного пускателя. При этом включается двигатель. Для какой цели нам служит вспомогательный контакт «самоподхвата питания” ? Если бы его не было и мы отпустили кнопку включения SBC, то катушка была бы у нас обесточена и двигатель остановился. Контакт «самоподхвата питания”, замыкаясь враз с силовыми контактами, шунтирует кнопку включения своими контактами и после её отпускания питание с катушки не пропадает, до тех пор, пока не будет нажата кнопка остановки двигателя SBT. Либо не будет обесточен станок или иное устройство, в котором будут установлены этот двигатель и схемы управления. Дальше изображен мощный контактор, устройство которого как уже писалось выше также основано на принципе действия электромагнитного реле:

Реле контактор

Тепловые реле

   Второй тип реле, также широко используемый в электротехнике, это тепловые реле. Фото теплового реле приводится на следующем рисунке:

Фото тепловое реле

   Эти реле очень часто используются в паре с электромагнитными реле (пускателями и контакторами) для защиты электрических цепей с электродвигателями от перегрузок. Если кто-нибудь обратил внимание, на рисунке, где была приведена схема нереверсивного пуска электродвигателя, присутствует и такое схематическое изображение:

Изображение на схеме тепловое реле

   Ниже на рисунке показано устройство теплового реле:

Рисунок устройство теплового реле

   Как устроено тепловое реле: в его состав входит биметаллическая пластина, сделанная из двух металлов имеющих различный коэффициент расширения. При нагреве биметаллическая пластина изгибается и освобождает пружину, которая размыкает силовые контакты теплового реле. Происходит это мгновенно, в целях быстрого гашения дуги. Так обозначается, на схемах (выделено красным) тепловое реле.

Обозначение на схема теплового реле

   На рисунке под цифрой 2 изображены контакты теплового реле, которые размыкаются при срабатывании теплового реле и обесточивают двигатель. Под цифрой 1 показаны контакты теплового реле, которые входят в цепь с биметаллической пластиной. После срабатывания реле можно включить заново, после остывания пластины нажав на толкатель, размещенный на тепловом реле.

Реле времени

   В радиоэлектронике и электротехнике часто используются так называемые реле времени:

Реле времени фото

   Такие реле предназначены для выдержки времени, по истечении которого включается другое устройство, подключенное к реле времени. Существуют и находят применение в электронике также герконовые реле. Герконы — это герметичные устройства управляемые магнитным воздействием. Фото герконового реле и его устройство приведено на картинках расположенных ниже:

Герконовое реле фото

   Современным трендом является использование твердотельных реле — где полностью отсутствуют подвижные части, а функцию коммутатора берут на себя силовые тиристоры или транзисторы, но об этом вы можете почитать здесь. Обзор подготовлен специально для сайта Радиосхемы, с вами был AKV.

   Форум по автоматике и реле 

   Обсудить статью РЕЛЕ


Контактор и магнитный пускатель в автоматике

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под  цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя  — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный пускатель

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).


Схема самоподхвата пускателя — Всё о электрике

Магнитный пускатель в системах автоматики

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный пускатель

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).

Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Краткое содержимое статьи:

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

Как работает пускатель

Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

Сеть на 220 вольт

При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

Кнопки «пуск» и «стоп»

При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

Трехфазная сеть на 380 В

При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

Как подключить магнитный пускатель. Схема подключения.

02 Мар 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем. В первой части статьи мы с Вами познакомились с устройством, назначением и работой магнитного пускателя, а сегодня рассмотрим его электрическую схему подключения.

Но прежде чем собирать схему, давайте сделаем небольшое отступление и познакомимся с одним важным элементом схемы управления работой магнитного пускателя – кнопка.

Как Вы уже догадались кнопками «Пуск», «Стоп», «Вперед», «Назад» осуществляется дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует. Управляющие кнопки выпускают двух видов: с размыкающим и замыкающим контактом.

Кнопка «Стоп».

Кнопку «Стоп» легко отличить по красному цвету.
В кнопке используется размыкающий (нормально замкнутый) контакт, через который проходит напряжение питания в схему управления пускателем.

В начальном положении, когда кнопка не нажата, подвижный контакт кнопки поддавливается снизу пружиной и собой замыкает два неподвижных контакта, соединяя их между собой. И если кнопка стоит в электрической цепи, то в этот момент через нее протекает ток.
Когда же необходимо разомкнуть цепь — кнопку нажимают, подвижный контакт отходит от неподвижных контактов и цепь размыкается.

При отпускании кнопка опять возвращается в исходное положение пружиной, поддавливающей подвижный контакт, и он опять замыкает собой оба неподвижных контакта. На рисунке показаны контакты кнопки в нажатом и не нажатом положении.

Кнопка «Пуск».

Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.

Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.

При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть и цепи управления.

Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную схему цепи управления пускателем.
Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

{SOURCE}

циклов удержания, слабых и неиспользуемых в Swift

Управление памятью, циклы сохранения и использование ключевых слов weak и unowned немного сбивает с толку. С другой стороны, очень важно правильно понимать эту тему, потому что циклы сохранения — одна из основных причин проблем с памятью. Но не волнуйтесь! В этой статье вы узнаете все, что вам нужно знать.

Подсказка: этот пост был обновлен до Swift 3 и iOS 10

Содержание

Мы начнем с обсуждения основ управления памятью в Swift.На основе этого мы узнаем, что такое циклы сохранения и как их избежать, используя ключевые слова. слабый и без собственности. После этого мы рассмотрим два распространенных сценария, в которых могут возникать циклы сохранения. Мы завершим эту статью обсуждением двух способов обнаружения циклов сохранения. Как всегда, настоятельно рекомендуется воспроизвести все шаги на детской площадке.

Как работает управление памятью в Swift?

Мы начнем с изучения основ управления памятью в Swift.ARC (автоматический подсчет ссылок) выполняет большую часть работы по управлению памятью, и это очень хорошие новости. Принцип очень прост: по умолчанию каждая ссылка, указывающая на экземпляр класса, является так называемой сильной ссылкой. Пока есть хотя бы одна сильная ссылка, указывающая на экземпляр, этот экземпляр не будет освобожден. Когда не останется сильной ссылки, указывающей на этот экземпляр, экземпляр будет освобожден. Давайте посмотрим на следующий пример:

class TestClass { в этом() { печать («инициализация») } deinit { print («deinit») } } var testClass: TestClass? = TestClass () testClass = ноль

class TestClass {

init () {

print («init»)

}

deinit {

print («deinit»)

}

}

} var testClass: TestClass? = TestClass ()

testClass = nil

После создания экземпляра ситуация выглядит следующим образом:

testClass имеет сильную ссылку на экземпляр TestClass.Если мы теперь установим для этой ссылки значение nil, сильная ссылка исчезнет, ​​и, поскольку не осталось сильной ссылки, экземпляр TestClass освобождается:

Кстати, если вы посмотрите на консоль, то увидите, что все работает нормально, потому что Метод deinit будет вызываться системой только при освобождении экземпляра:

Если экземпляр TestClass не был освобожден, не было бы сообщения «deinit». Как мы обсудим позже, размещение сообщения журнала внутри deinit — очень хороший способ наблюдать за освобождением объекта.

Что такое удерживающий цикл?

Итак, принцип ARC работает очень хорошо, и в большинстве случаев вам не нужно об этом думать. Однако бывают ситуации, когда это не работает, и вам нужно немного помочь. Взгляните на следующий пример:

class TestClass { var testClass: TestClass? = ноль в этом() { печать («инициализация») } deinit { print («deinit») } } var testClass1: TestClass? = TestClass () var testClass2: TestClass? = TestClass () testClass1 ?.testClass = testClass2 testClass2? .testClass = testClass1

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

class TestClass {

var testClass: TestClass? = nil

init () {

print («init»)

}

deinit {

print («deinit»)

}

var

var 9000 testClass1: TestClass? = TestClass ()

var testClass2: TestClass? = TestClass ()

testClass1 ?.testClass = testClass2

testClass2? .testClass = testClass1

Снова у нас есть класс под названием TestClass. Теперь мы создаем два экземпляра этого класса и позволяем этим экземплярам указывать друг на друга. Ситуация визуализирована на следующем рисунке:

Теперь давайте установим для наших двух переменных значение ноль:

testClass1 = ноль testClass2 = ноль

testClass1 = ноль

testClass2 = ноль

Но два экземпляра не будут освобождены! Вы можете видеть это, потому что в консоли нет сообщений «deinit».Почему это происходит? Давайте посмотрим на ситуацию:

Каждый класс потерял одну сильную ссылку, но для каждого класса все еще осталось по одной! Это означает, что этот экземпляр не будет освобожден. Хуже того, в нашем коде не осталось никаких ссылок на эти классы. Это называется утечкой памяти. Если в вашем приложении есть несколько утечек, использование памяти приложением будет увеличиваться каждый раз, когда вы его используете. Когда использование памяти слишком велико, iOS убивает приложение. Вот почему так важно заботиться о циклах сохранения.Так как же нам их предотвратить?

слабый

Использование так называемых слабых ссылок — способ избежать циклов сохранения. Если вы объявите ссылку слабой, это не будет сильной ссылкой. Это означает, что эта ссылка не препятствует освобождению экземпляра. Давайте изменим наш код и посмотрим, что произойдет:

class TestClass { слабый var testClass: TestClass? = nil // Теперь это слабая ссылка! в этом() { печать («инициализация») } deinit { print («deinit») } } var testClass1: TestClass? = TestClass () var testClass2: TestClass? = TestClass () testClass1 ?.testClass = testClass2 testClass2? .testClass = testClass1 testClass1 = ноль testClass2 = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

21

22

23

class TestClass {

weak var testClass: TestClass? = nil // Теперь это слабая ссылка!

init () {

print («init»)

}

deinit {

print («deinit»)

}

} 9000class

: 9000 var TestClass? = TestClass ()

var testClass2: TestClass? = TestClass ()

testClass1 ?.testClass = testClass2

testClass2? .testClass = testClass1

testClass1 = nil

testClass2 = nil

После этого небольшого изменения у нас есть результат отладчика, который мы и ожидали в первую очередь:

На следующем рисунке показана ситуация:

Остались только слабые ссылки, и экземпляры будут освобождены.

Есть еще одна важная вещь о weak, вам нужно знать: после освобождения экземпляра соответствующая переменная станет ноль.Это хорошо, потому что если мы обратимся к переменной, указывающей куда-то, где не осталось экземпляров, возникнет исключение во время выполнения. Потому что только опции могут стать nil, каждая слабая переменная должна быть необязательной.

unownend

Кроме того weak, есть второй модификатор, который можно применить к переменной: без собственности. Он делает то же самое, что и weak, за одним исключением: переменная не станет nil, поэтому переменная не должна быть необязательной.Но, как я объяснил в предыдущем абзаце, приложение выйдет из строя во время выполнения, когда вы попытаетесь получить доступ к переменной после того, как его экземпляр был освобожден. Это означает, что вам следует использовать только unowned, если вы уверены, что к этой переменной никогда не будет доступа после освобождения соответствующего экземпляра.

Вообще говоря, всегда безопаснее использовать слабый. Однако, если вы не хотите, чтобы переменная weak И вы уверены, что к нему нельзя получить доступ после освобождения соответствующего экземпляра, вы можете использовать без собственности.

Это немного похоже на использование неявно развернутых опций и попробуйте! Вы можете их использовать, но почти во всех случаях это не очень хорошая идея.

Общие сценарии для циклов удержания: делегаты

Итак, каковы общие сценарии для циклов удержания? Один очень распространенный сценарий — использование делегатов. Итак, у вас есть контроллеры представления, у которых есть контроллер дочернего представления. Контроллер родительского представления устанавливает себя в качестве делегата контроллера дочернего представления, чтобы получать информацию о некоторых ситуациях:

class ParentViewController: UIViewController, ChildViewControllerProtocol { пусть childViewController = ChildViewController () func prepareChildViewController () { childViewController.делегат = сам } } протокол ChildViewControllerProtocol: class { // важные функции … } class ChildViewController: UIViewController { делегат var: ChildViewControllerProtocol? }

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

21

22

класс ParentViewController: UIViewController, ChildViewControllerProtocol {

let childViewController = ChildViewController ()

func prepareChildViewController () {

childViewController.делегат = self

}

}

протокол ChildViewControllerProtocol: класс {

// важные функции …

}

class

class 9000iewController: U делегат: ChildViewControllerProtocol?

}

Если вы делаете это таким образом, будет утечка памяти из-за цикла сохранения после появления ParentViewController:

Вместо этого мы должны объявить делегировать собственность как слабую:

слабый делегат var: ChildViewControllerProtocol?

слабый делегат var: ChildViewControllerProtocol?

Между прочим, если вы посмотрите определение UITableView, вы увидите, что делегировать и Свойства источника данных также определены как слабый:

слабый общедоступный источник данных var: UITableViewDataSource? слабый публичный делегат var: UITableViewDelegate?

слабый общедоступный источник данных var: UITableViewDataSource?

слабый публичный делегат var: UITableViewDelegate?

Поэтому помните, что вы должны почти во всех случаях объявлять делегатов как слабый, чтобы предотвратить циклы сохранения.

Общие сценарии для циклов хранения: закрытия

Закрытия — еще один сценарий, при котором очень вероятно возникновение циклов сохранения. Давайте посмотрим на следующую ситуацию:

class TestClass { var aBlock: (() -> ())? = ноль пусть aConstant = 5 в этом() { печать («инициализация») aBlock = { печать (self.aConstant) } } deinit { print («deinit») } } var testClass: TestClass? = TestClass () testClass = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

21

22

23

class TestClass {

var aBlock: (() -> ())? = nil

let aConstant = 5

init () {

print («init»)

aBlock = {

print (self.aConstant)

}

}

deinit {

print («deinit»)

}

}

var testClass: TestClass? = TestClass ()

testClass = nil

В журналах мы видим, что экземпляр TestClass не будет освобожден. Проблема в том, что TestClass имеет сильную ссылку на закрытие, а закрытие имеет сильную ссылку на TestClass:

Вы можете решить эту проблему, захватив самооценка как слабая:

class TestClass { var aBlock: (() -> ())? = ноль пусть aConstant = 5 в этом() { печать («инициализация») aBlock = {[слабое я] в // Я фиксируется как слабое! print (self ?.a Константа) } } deinit { print («deinit») } } var testClass: TestClass? = TestClass () testClass = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

21

22

23

class TestClass {

var aBlock: (() -> ())? = nil

let aConstant = 5

init () {

print («init»)

aBlock = {[weak self] in // self фиксируется как слабый!

отпечаток (сам ?.aConstant)

}

}

deinit {

print («deinit»)

}

}

var testClass: TestClass? = TestClass ()

testClass = nil

Теперь экземпляр будет освобожден, как мы видим в журналах:

Однако при закрытии не всегда будет цикл сохранения! Например, если вы просто используете блок локально, нет необходимости захватывать себя слабым:

class TestClass { пусть aConstant = 5 в этом() { печать («инициализация») let aBlock = { печать (сам.a Константа) } } deinit { print («deinit») } } var testClass: TestClass? = TestClass () testClass = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

class TestClass {

let aConstant = 5

init () {

print («init»)

let aBlock = {

print (self.aConstant)

}

}

deinit {

print («deinit»)

}

}

var testClass: TestClass? = TestClass ()

testClass = nil

Причина в том, что нет сильной ссылки на блок, поэтому блок будет освобожден после возврата из метода. То же самое верно при использовании, например, UIView.animateWithDuration:

class TestClass { пусть aConstant = 5 в этом() { печать («инициализация») } deinit { print («deinit») } func doSomething () { UIView.animate (withDuration: 5) { пусть aConstant = self.aConstant // модная анимация … } } } var testClass: TestClass? = TestClass () testClass ?.сделай что-нибудь() testClass = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

14

13

14

18

19

20

21

22

23

24

25

26

27

class TestClass {

let aConstant = 5

init () {

print («init»)

}

deinit {

print («deinit») 9000

func doSomething () {

UIView.animate (withDuration: 5) {

let aConstant = self.aConstant

// необычная анимация …

}

}

}

9000Class 9000 test2 test2 = TestClass ()

testClass? .DoSomething ()

testClass = nil

Так что, если нет четкой ссылки на блок, вам не нужно беспокоиться о цикле сохранения.

Конечно, вы также можете использовать без собственности вместо слабый, и наш предыдущий пример действительно является ситуацией, когда вы можете сделать это безопасно:

class TestClass { var aBlock: (() -> ())? = ноль пусть aConstant = 5 в этом() { печать («инициализация») aBlock = {[я без владельца] в печать (self.aConstant) } } deinit { print («deinit») } } var testClass: TestClass? = TestClass () testClass = ноль

1

2

3

4

5

6

7

8

9

10

11

12

13

140002

13

14

18

19

20

21

22

23

class TestClass {

var aBlock: (() -> ())? = nil

let aConstant = 5

init () {

print («init»)

aBlock = {[unowned self] в

print (self.aConstant)

}

}

deinit {

print («deinit»)

}

}

var testClass: TestClass? = TestClass ()

testClass = nil

Вы можете сделать это безопасно, потому что если TestClass будет освобожден, как и блок. Не может случиться так, что блок пытается получить доступ к Ссылка TestClass, когда он освобожден.Однако, на мой взгляд, рекомендуется использовать слабый даже в этой ситуации. Это немного больше работы, потому что вам придется иметь дело с дополнительным, но это всегда безопаснее.

Обнаружение циклов сохранения с использованием сообщений журнала в деинициализации

После того, как мы узнали, что такое циклы сохранения и что мы можем сделать, чтобы их избежать, мы должны обсудить, как мы можем их обнаружить. Мой любимый метод — использовать сообщение журнала в deinit метод. Вероятно, это не очень элегантный способ сделать это, но он очень эффективен.

deinit { print («deinit») }

deinit {

print («deinit»)

}

Если мы не видим сообщение журнала в консоли, хотя ожидаем, что соответствующий экземпляр будет освобожден, мы знаем, что что-то идет не так. Это особенно полезно для контроллеров представления — вы действительно должны поместить его в каждый контроллер представления.Например, когда мы открываем контроллер представления, мы знаем, что сообщение должно появиться. Если да, то мы знаем, что все в порядке. Если нет, то вам нужно поработать.

Обнаружение циклов удержания с помощью инструментов

Люди часто говорят об использовании инструментов как о хорошем способе определения цикла удержания. На самом деле, я не использую его очень часто, потому что рабочий процесс немного особенный, и для меня просмотр сообщений журнала имеет такое же значение. Тем не менее, это во многом зависит от личных предпочтений, так что давайте поговорим об этом.

Представьте следующую ситуацию: у нас есть приложение, которое имеет три контроллера представления, и эти контроллеры подталкиваются контроллером навигации. Таким образом, первый контроллер представления подталкивает контроллер представления два, а контроллер представления два подталкивает контроллер представления три. После двойного нажатия кнопки «Назад» мы снова находимся на первом контроллере представления и ожидаем, что два других контроллера представления будут освобождены.

В этом примере я реализовал цикл сохранения между контроллером представления два и контроллером представления три.

Прибор может автоматически отображать утечки, но, к сожалению, он не всегда работает. Но есть ручной способ, который очень хорошо работает.

Для того, чтобы этот способ работал, вы должны убедиться, что все ваши контроллеры представления имеют один и тот же суффикс, например «ViewController» или «VC». Затем запускаем инструменты, выбирая «Продукт -> Профиль». Выберите шаблон «Утечки»:

Вы можете увидеть все распределения в области «Сводка распределения», и там много всего происходит.Для лучшего обзора мы добавляем новый тип записи «ViewController (isSuffix)» на правой панели и убираем отметку «*»:

Теперь будет намного проще. Запускаем приложение, нажав на кнопку записи. Для каждого нажатого контроллера представления появится новая запись:

SecondViewController был отправлен:

ThirdViewController был отправлен:

Пока все хорошо. Однако после нажатия кнопки возврата ThirdViewController все еще жив:

Это означает ThirdViewController не был освобожден, поэтому мы знаем, что что-то идет не так и что, вероятно, есть какая-то утечка из-за цикла сохранения.

Если все ваши контроллеры представления всегда имеют один и тот же суффикс, вы можете использовать эту технику для просмотра всего приложения и поиска утечек памяти.

Резюме

Из этой статьи вы узнали основы управления памятью в Swift, что такое цикл сохранения и как предотвратить возникновение циклов сохранения. Кроме того, вы узнали, как их обнаружить. Это очень много, и вам, вероятно, придется прочитать статью несколько раз, чтобы понять все детали. Но применив эти идеи к реальному приложению, вы очень хорошо познакомитесь с этой темой.Пожалуйста, оставьте свои комментарии ниже.

Список литературы

Изображение: @ niroworld / shutterstock.com
Swift: слабый и неподдерживаемый
Создание эффективных приложений с памятью
Язык программирования Swift — автоматический подсчет ссылок

.

Самоблокирующиеся стопорные кольца — Daemar Inc

Начало >> Стопорные кольца >> Самоблокирующиеся

Самоблокирующиеся стопорные кольца могут быть установлены на вал или в корпус / отверстие без использования канавки. Они экономят время обработки и общие затраты, поскольку для установки не требуется паз. Они также бывают небольших размеров (некоторые фитинги имеют диаметр до 0,058 дюйма) и могут эффективно и экономично использоваться в небольших приложениях с очень низкими осевыми нагрузками.Большинство самоблокирующихся стопорных колец не снимаются после установки.


dmr-retaining-ring-shf-external-shaft-friction-ring-01

SHF — Кольцо трения внешнего вала

Кольцо SHF напоминает обычное кольцо SH, за исключением того, что оно предназначено для работы на валу без канавки. Конструкция кольца обеспечивает равномерное распределение значительного усилия захвата на валу (за исключением зазора).

Диапазон размеров: 0,058 — 0,755 дюйма

dmr-retaining-ring-rg-external-radial-grip-ring-01

RG — Внешнее радиальное зажимное кольцо

После установки RG делает углубления с обеих сторон канавки, что значительно увеличивает его удерживающую способность.Его также можно установить непосредственно напротив торца удерживаемой детали, практически исключая осевой люфт. Автоматическая установка с помощью пневматического установочного инструмента Rock Kick Jr. (Примечание: этот продукт работает только на «мягких» валах.)

Диапазон размеров: 0,092 — 0,379 дюйма

Daemar-DMR-RetainingRing-tx-Series-200x200.jpg

TX — Зубчатое внешнее «нажимное» кольцо (изогнутый обод)

Это кольцо имеет внешний обод с рядом выступов, выступающих в центре. Концы создают столкновение с валами, когда кольцо установлено и нагрузка прилагается к другой стороне.Внешний обод TX изогнут. Изогнутый обод TX обеспечивает большую осевую нагрузку, чем TY, и его легче ориентировать при сборке.

Диапазон размеров: 0,091 — 1,005 дюйма

dmr-retaining-ring-ty-external-push-on-ring-flat-rim-01

TY — Зубчатое внешнее «нажимное» кольцо (плоский обод)

Это кольцо имеет внешний обод с рядом выступов, выступающих в центре. Концы создают столкновение с валами, когда кольцо установлено и нагрузка прилагается к другой стороне. Внешний ободок TY плоский.

Диапазон размеров: 0,093 — 1,002 дюйма

dmr-retaining-ring-ti-internal-push-on-ring-01

TI — Зубчатое внутреннее «нажимное» кольцо

Внутренняя версия TY с выступающими наружу зубцами. Концы создают помехи в корпусе, когда кольцо установлено и нагрузка прилагается к другой стороне.

Диапазон размеров: 0,331 — 2,002 дюйма

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *