Фнч для сабвуфера: Обзор ФНЧ для сабвуфера

Содержание

Обзор ФНЧ для сабвуфера

Сегодня сабвуфер — неотъемлемая часть любого домашнего кинотеатра. Впрочем, не только домашнего. В публичных кинотеатрах тоже стоят сабвуферы. Их задача с максимальной реалистичностью воспроизводить звуки выстрелов, взрывов, грохота проползающего по экрану танка или проплывающего в экранном холодном космическом пространстве межзвездного галактического имперского крейсера. Да, да, я знаю, что крейсеры в космическом пространстве проплывают бесшумно, но у Джорджа Лукаса, который снял потрясающую киноэпопею «Звездные войны» на этот счет совершенно другое мнение. И это правильное мнение, поскольку одно дело смотреть на безмолвный имперский крейсер, а другое — слышать и даже ощущать проход мощной машины. Да, про ощущать я не оговорился, ибо низкочастотные вибрации, создаваемые мощным сабвуфером ощущаются буквально всем телом.

Собственно, сам сабвуфер является мощным низкочаcтотным динамиком, подключенным к специальному сабвуферному каналу многоканальной системы усилителей. Сабвуферный канал при записи звуковой дорожки к фильму пишется отдельно, так что вся информация в нем содержащаяся — это исключительно о том, где и когда надо бахнуть и с какой силой. Но это в случае цифровой записи сигнала. При аналоговой записи-воспроизведении сигнал сабвуферного канала может выделяться из общего сигнала фонограммы при помощи специального Фильтра Низких Частот — ФНЧ.

В общем случае именно ФНЧ формирует сигнал сабвуферного канала и именно от его параметров зависит насколько мощно, сочно, четко будет бабахать сабвуфер. Разумеется, не только от ФНЧ, но и от акустического оформления самого сабвуфера зависит насколько высоко вы будете подпрыгивать в кресле от очередного киношного выстрела или взрыва, но сейчас мы рассмотрим именно ФНЧ.

Два самых главных параметра ФНЧ называются: частота среза и крутизна спада.

Начнем с первой.

Дело в том, что динамик сабвуфера большой, тяжелый, неповоротливый, чаще всего с огромным диффузором, который призван создавать большое звуковое давление, вдавливающее зрителя в кресло.

Амплитуда колебаний этого диффузора должна быть достаточно велика, поэтому на сабвуфер подается очень приличная мощность от выходного усилителя. Если мы не отфильтруем ВЧ составляющие сигнала, подаваемого на динамик, то просто спалим его, ибо он физически не сможет так быстро двигаться, в результате чего катушка динамика перегреется и разрушится.

Таким образом, наш ФНЧ занимается тем, что просто отрезает от входного сигнала ненужные для сабвуфера куски частотного диапазона и на выходе оставляет только те, которые не угробят сабвуфер и будут эффективно им воспроизводиться.

Посмотрим на амплитудно-частотную характеристику ФНЧ (ура, первая картинка!):


Итак, частота среза, выражаясь человеческим языком — это та частота, за которой амплитуда выходного сигнала резко падает. Посмотрите на левую картинку — так должен выглядеть идеальный ФНЧ — до определенной частоты сигнал есть, после нее — сигнала нет. Но реальность, как обычно, несколько хуже. На правой картинке показана работа реального ФНЧ.

Частота, на которой уровень выходного сигнала ослабляется на 3дБ называется частотой среза ФНЧ — Fср. на картинке. Как видно по правой картинке, реальный ФНЧ ослабляет сигнал за частотой среза не сразу, а постепенно и тут у нас есть возможность перейти ко второй основной характеристике ФНЧ — крутизне спада.

Общеизвестно, что погоня за идеальным — самая большая ошибка человечества. Тем не менее, человечество не перестает за ним гнаться, набивая по пути знатные шишки.

С ФНЧ такая же история. Как вы видите на картинке выше, у идеального ФНЧ АЧХ поворачивает на 90 градусов на частоте среза, то есть, ни одна капелька сигнала за частотой среза не появится на выходе ФНЧ. Это — идеальная крутизна спада ФНЧ.

У любого реального ФНЧ данная характеристика более пологая и никогда не станет идеальной, но может максимально к ней приблизиться.

Посмотрим на второй рисунок — на нем отображены крутизна спада ФНЧ в зависимости от так называемого порядка ФНЧ — числа звеньев, из которых состоит фильтр.


Чем больше звеньев в ФНЧ, чем ближе его АЧХ к идеальной. Но тут надо заметить, что увеличение числа звеньев фильтра приводит к его схемотехническому усложнению и как следствие, увеличению количества электронных компонентов, из которых сделан фильтр, а следом и цены этого устройства. Помимо этого, разумеется, растут шум, искажения, уменьшается амплитуда выходного сигнала.

Простейшее звено ФНЧ выглядит следующим образом:

 


Это пассивный ФНЧ первого порядка. Включая такие звенья последовательно можно добиться весьма существенной крутизны спада. Но при этом, как уже отмечалось выше, существенно растут шумы и искажения в звуковом тракте. Более того, для согласования входного и выходного сопротивления такого фильтра необходимо на входе и выходе ФНЧ устанавливать буферные усилители. В противном случае сопротивление источника сигнала и сопротивление нагрузки фильтра будет существенно влиять на частоту среза.

Поэтому, чаще всего для построения ФНЧ используют схемы активного фильтра на операционных усилителях.

Вот, например, активный ФНЧ второго порядка:


Не смотря на простоту самого фильтра необходимо помнить о буферных усилителях, которые нужны и для этого типа ФНЧ. Да и к тому же, 2 порядок — это как-то маловато, а значит, нужно последовательное включение двух таких фильтров.

В общем, схема разрастется прилично.

Более того. Если вы только начинаете заниматься сабвуферами и всем, что с ними связано, непременно начнете читать профильные сайты и форумы, где обсуждаются те или иные способы построения ФНЧ. И тут выяснится, что помимо всего прочего есть фильтр Чебышева, фильтр Баттерворта, эллиптический фильтр, фильтр Саллена-Ки. И у каждого схемного решения есть свои плюсы и минусы. Честно говоря, закопаться можно запросто.

Видимо, поглядев на все это в древнерусской тоске, тайваньская компания PTC почесала в затылке и выпустила отличную микросхему — PT2351 – фильтр НЧ Саллена-Ки третьего порядка.

Микросхема в 8-выводном корпусе содержит в себе все элементы, необходимые для построения ФНЧ с очень приличными характеристиками.


Стерео сигнал от источника поступает на два буферных усилителя с высоким входным сопротивлениям. Сигнал смешивается и нормируется по уровню в смесителе, после чего поступает собственно на ФНЧ со встроенным выходным буферным каскадом (выходное сопротивление — всего 40 Ом), позволяющим подключать фильтр непосредственно к нагрузке без дополнительных плясок с буфером на ОУ.

Частота среза такого фильтра задается внешними конденсаторами.

На основе этой микросхемы был разработан набор для самостоятельной сборки NM0103 «ФНЧ для сабфувера».

 


Основные технические характеристики:

 

Частота среза, Гц60(80)
Крутизна спада, дб/окт.18
Коэффициент нелинейных искажений, %0,1
Отношение сигнал/шум, дБ (невзвешенное-82
Коэффициент усиления, дБ10
Максимальное выходное напряжение, В2,8
Входное сопротивление, кОм100
Напряжение питания, В12
Потребляемый ток, мА10

 

Принципиальная схема:


Как видите, схема простейшая с очень небольшим количеством навесных компонентов.

Схема универсальная — благодаря встроенному стабилизатору напряжения VD1, R3, C6 этот ФНЧ может применяться как для построения автомобильного сабвуфера, так и для домашнего кинотеатра или музыкальных систем 2.1. Максимальное напряжение питания, которое можно подавать на фильтр — 20 Вольт. Впрочем, если увеличить резистор R3, то можно и больше.

Питание однополярное, что серьезно облегчает встраивание такого фильтра в уже имеющийся звуковой тракт.

Частота среза фильтра определяется емкостью конденсаторов C3, C7. В наборе есть два комплекта конденсаторов разной емкости для построение ФНЧ с частотой среза 60Гц или 80Гц.

АЧХ фильтра:


Ну, а если номиналы конденсаторов, входящих в набор вас по каким-то причинам не устроят, их можно выбрать из нижеследующей таблицы:


Часть номиналов конденсаторов получается нестандартной и составляется из двух конденсаторов стандартной емкости — номиналы указаны в скобках.

Из недостатков данной схемы по сравнению со схемами на ОУ можно отметить невозможность плавной регулировки частоты среза, а так же отсутствие регулировки фазы выходного сигнала.

Но вот часто ли нужны такие регулировки?

BM2115, Активный фильтр НЧ для сабвуфера

Описание

Усилители предварительные

Предлагаемый блок — это простой и надежный активный фильтр НЧ для сабвуфера, обладающий малым уровнем собственного шума, малыми габаритами и энергопотреблением, широким диапазоном питающих напряжений, минимальным числом внешних пассивных элементов обвязки. Использование активного фильтра избавит Вас от установки громоздкого пассивного ФНЧ на выходе УМ, обладающего низким КПД.

Фильтр устанавливается между линейным выходом источника сигнала и входом УМ сабвуфера. Он хорошо зарекомендовал себя при работе совместно с мощным автомобильным усилителем NM2034 (70 Вт/12 В).

Технические характеристики.
Напряжение питания: 3…32 В.

Ток потребления: 6 мА.
Частота среза: 100 Гц.
Усиление в полосе пропускания: 6 дБ.
Затухание вне полосы пропускания: 12 дБ/Окт.
Размеры печатной платы: 37×27 мм.

Описание работы.
Фильтр (неинвертирующий, второго порядка) выполнен на сдвоенном операционном усилителе LM358 (DA1). Светодиод HL1 индицирует работу устройства, потенциометром R1 осуществляется регулировка уровня входного сигнала.
Фильтр устанавливается между линейным выходом источника сигнала и входом УМ сабвуфера.

Конструкция.
Конструктивно активный фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в корпус BOX-M01, который не входит в комплект .
Геометрия устройства позволяет монтировать его «в разрыв» сигнального провода. Для удобства подключения питающего напряжения и сигнальных проводов предусмотрены парные клеммные винтовые зажимы.

Перед установкой платы фильтра в корпус BOX-M01 , необходимо просверлить в верхней крышке отверстие диаметром 4 мм для светодиода HL1 и сделать выпилы под сигнальные провода и провода питания, а в нижней крышке просверлить отверстие диаметром 5 мм для регулировки R1.

Правильно собранное устройство не требует настройки.

Рекомендации по совместному использованию электронных наборов.
Данный набор рекомендуется использовать совместно с наборами NM2034 и NM2042 .

Технические параметры

Диапазон напряжений питания (B) 7…15
Длина (мм) 37
Затухание вне полосы пропускания (дБ/Окт) 12
Коэффициент усиления (dbi) 6
Потребляемый ток, не более (мА) 6
Частота среза (Гц) 100
Ширина (мм) 27
Вес, г 46

Техническая документация

Фнч своими руками | Assa59.ru

НЧ ФИЛЬТР ДЛЯ САБВУФЕРА

Здравствуйте, уважаемые радиолюбители! Сегодня хочу вам предложить схему фильтра НЧ для любого самодельного сабвуфера. Мною было опробовано не мало схем фильтров, из этого количества некоторые либо не устраивали по звуку, либо запускались с танцами под бубен, либо запускались вообще броском об стену! И вот в один прекрасный день лазил по одному форуму, и наткнулся на пост со схемой. Как писали, схема была найдена на каком-то форуме в давно забытой теме и очень его порадовала своей повторяемостью и хорошим звучанием баса. Большое спасибо этому человеку! Решил и я повторить эту схемку, так как давно в поисках хорошего ФНЧ и нужная микросхема была в наличии.

Схема электрическая фильтра НЧ

Скопируйте для увеличения

Сердце схемы, хорошо себя зарекомендовавшая TL074 (084), один сдвоенный переменный резистор, в таком нестандартном для меня включении, и немного пассивных компонентов (резисторы и конденсаторы). Решил, что для питания откажусь от всяких лишних стабилизаторов (7815 и 7915) – потребления схемы небольшое, и поэтому решено запитать схему по простому – пара стабилитронов (применил 1N4712), пара ограничивающих резисторов (1.5 kom у меня), небольшие электролиты по питанию и шунтирующие конденсаторы по 0,1 мкф – все это к основному питанию УНЧ сабвуфера (+-35 вольт в моём случае).

Монтаж выполнен на печатной плате из текстолита – скачать файл. Печатку немного подкорректировал под себя и добавил стабилитроны. Все элементы подписаны, наводите курсор на элементы – показывается его номинал. Переменные резисторы, регулирующий частоту среза и регулировки громкости, в моём варианте выведены с платы на проводках.

Схема работает сразу, делал уже раз десять этот ФНЧ – естественно если не путать номиналы и не оставлять сопельки между дорожек. Также хочу сказать что чувствительности фильтра хватает, чтобы подключать портативные источники звука такие как: сотовый телефон, mp3 плеер и подобные устройства.

Приготовили плату? Тогда берём паяльник, и первым делом запаивайте стабилитроны с ограничивающими резисторами и конденсаторы, панельку для TL-ки. Подключите плату к источнику питания вашего УНЧ (у меня +-35 вольт) – удостоверьтесь что к 4 и 11 ножки микросхемы на панельки поступает +-12 вольт. Если всё правильно – паяем конденсаторы, резисторы.

Не забываем, что конденсаторы нужно ставить пленочные в такие схемы, не считая электролитов и шунтирующих по питанию.

Переменный резистор, на регулировку среза частоты – нужно подключать именно как нарисовано по схеме. Повторюсь, что схема не нуждается в настройках, правильный монтаж и чистка платки от флюса, если использовали упомянутый.

Теперь в своих конструкциях сабвуферов, всегда использую этот фильтр за его хорошее качество баса и простую схему. Также без лишних ненужных наворотов. Рекомендую, как говорится к повторению, с вами был Akplex.

Обсудить статью НЧ ФИЛЬТР ДЛЯ САБВУФЕРА

Содержание драгоценных металлов в отечественных автомобилях – ГАЗ, ЗИЛ, МАЗ.

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Фильтр НЧ для сабвуфера своими руками

Когда мы говорим «Фильтр для сабвуфера» — имеется в виду активный фильтр нижних частот. Он особенно полезен при расширении стереофонической звуковой системы на дополнительный динамик воспроизводящий только самые низкие частоты. Данный проект состоит из активного фильтра второго порядка с регулируемой граничной частотой 50 — 250 Гц, входного усилителя с регулировкой усиления (0.5 — 1.5) и выходных каскадов.

Конструкция обеспечивает прямое подключение к усилителю с мостовой схемой, так как сигналы сдвинуты относительно друг друга по фазе на 180 градусов. Благодаря встроенному источнику питания, стабилизатору на плате, можно обеспечить питание фильтра симметричным напряжением от усилители мощности — как правило это двухполярка 20 — 70 В. Фильтр НЧ идеально подходит для совместной работы с промышленными и самодельными усилителями и предусилителями.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Подключение сабвуферного фильтра

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, например такой. При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.

Фильтр для сабвуфера своими руками

Психоакустика (наука, изучающая звук и его влияние на человека) установила, что человеческое ухо способно воспринимать звуковые колебания в диапазоне от 16 до 20000 Гц. При том, что диапазон 16-20 Гц (низкие частоты), воспринимается уже не самим ухом, а органами осязания.

Многие меломаны сталкиваются с тем, что большинство поставляемых акустических систем не удовлетворяет их потребности в полной мере. Всегда находятся мелкие недоработки, неприятные нюансы и т.п., которые побуждают собирать колонки с усилителями своими руками.

Еще одна категория людей, которые предпочитают делать звуковое оборудование самостоятельно – автовладельцы. Сборка и запуск мощной акустической системы в машине – непростое и весьма дорогостоящее мероприятие.

Возможны и другие причины сборки сабвуфера (профессиональный интерес, хобби и т.п).

Сабвуфер (от англ. «subwoofer») – низкочастотный динамик, который может воспроизводить звуковые колебания в диапазоне 5-200 Гц (в зависимости от типа конструкции и модели). Может быть пассивным (использует выходной сигнал с отдельного усилителя) или активным (оснащается встроенным усилителем сигнала).

Низкие частоты (басы) в свою очередь можно разделить на три основные подвида:

  • Верхние (англ. UpperBass) – от 80 до 150-200 Гц.
  • Средние (англ. M >

Функции и принцип работы фильтров для сабвуфера

Фильтры частот применяются как для работы активных сабвуферов, так и пассивных.

Преимущества активных низкочастотных динамиков заключается в следующем:

  • Активный усилитель сабвуфера не нагружает дополнительно акустическую систему (так как питается отдельно).
  • Входной сигнал может фильтроваться (исключаются посторонние шумы от воспроизведения высоких частот, работа устройства концентрируется только на том диапазоне, в котором динамик обеспечивает наилучшее качество передачи колебаний).
  • Усилитель при правильном подходе к конструкции может гибко настраиваться.
  • Исходный спектр частот можно разделить на несколько каналов, с которыми можно уже работать по-отдельности – низкие частоты (на сабвуфер), средние, высокие, а иногда и сверхвысокие частоты.

Виды фильтров для низких частот (НЧ)

  • Аналоговые схемы.
  • Цифровые устройства.
  • Программные фильтры.
  • Активный фильтр для сабвуфера (так называемый кроссовер, обязательный атрибут любого активного фильтра – дополнительный источник питания)
  • Пассивный фильтр (такой фильтр для пассивного сабвуфера лишь отсеивает необходимые низкие часты в заданном диапазоне, не усиливая сигнала).

По крутизне спада

  • Первого порядка (6 дБ/октав.)
  • Второго порядка (12 дБ/октав.)
  • Третьего порядка (18 дБ/октав.)
  • Четвертого порядка (24 дБ/октав.)

Основные характеристики фильтров:

  • Полоса пропускания (диапазон пропускаемых частот).
  • Полоса задерживания (диапазон существенного подавления сигнала).
  • Частота среза (переход между полосами пропускания и задерживания происходит. нелинейно. Частота, на которой пропускаемый сигнал ослабляется на 3 дБ, называется частотой среза).

Дополнительные параметры оценки фильтров акустических сигналов:

  • Крутизна спада АХЧ (Амплитудно-Частотная Характеристика сигнала).
  • Неравномерность в полосе пропускания.
  • Резонансная частота.
  • Добротность.

Линейные фильтры электронных сигналов различаются между собой по типу кривых (зависимости показателей) АЧХ.

Разновидности таких фильтров чаще всего называются по фамилиям ученых, выявившим эти закономерности:

  • Фильтр Баттерворта (гладкая АЧХ в полосе пропускания),
  • Фильтр Бесселя (характерна гладкая групповая задержка),
  • Фильтр Чебышёва (крутой спад АЧХ),
  • Эллиптический фильтр (пульсации АЧХ в полосах пропускания и подавления),

Простейший НЧ фильтр для сабвуфера второго порядка выглядит следующим образом: последовательно подключенная к динамику индуктивность (катушка) и параллельно – емкость (конденсатор). Это так называемый LC-фильтр (L — обозначение индуктивности на электрических схемах, а C – емкости).

Принцип работы заключается в следующем:

  1. Сопротивление индуктивности прямо пропорционально частоте и поэтому катушка пропускает низкие частоты и задерживает высокие (чем выше частота, тем выше сопротивление индуктивности).
  2. Сопротивление емкости обратно пропорционально частоте сигнала и поэтому высокочастотные колебания затухают на входе динамика.

Такой тип фильтров – пассивный. Более сложные в реализации – активные фильтры.

Как сделать простой фильтр для сабвуфера своими руками

Как и было сказано выше, самые простые в конструкции – пассивные фильтры. Они имеют в составе всего несколько элементов (количество зависит от требуемого порядка фильтра).

Собрать свой собственный фильтр НЧ можно по готовым схемам в сети или по индивидуальным параметрам после подробных расчетов требуемых характеристик (для удобства можно найти специальные калькуляторы для фильтров разных порядков, с помощью которых можно быстро рассчитать параметры составляющих элементов – катушек, емкостей и т. п.).

Для активных фильтров (кроссоверов) можно использовать специализированное программное обеспечение, например, такое как «Crossover Elements Calculator».

В некоторых случаях при проектировании схемы может понадобиться фильтр-сумматор.

Здесь оба канала звука (стерео), например, после выхода с усилителя и т.п., необходимо сначала отфильтровать (оставить только НЧ), а потом объединить в один с помощью сумматора (так как сабвуфер чаще устанавливается всего один). Или наоборот, сначала суммировать, а затем отфильтровать НЧ.

В качестве примера возьмем простейший пассивный НЧ фильтр второго порядка.

Если сопротивление динамика будет 4 Ом, предполагаемая частота среза – 150 Гц, то для типа фильтрации по Баттерворту нужны будут:

  • L (индуктивность) = 6.003 mH
  • С (емкость) = 187.5 µF

Если конденсатор можно подобрать под требуемый параметр из готовых или собрать блок из нескольких параллельно соединенных, то катушку лучше всего намотать своими руками. Для этого необходимо предварительно рассчитать параметры индукции с помощью тех же готовых калькуляторов.

Так, что получения катушки с индуктивностью 6 мГн, из обмоточного медного провода диаметром 1 мм, понадобится стержень диаметром 1 см и длиной 6 см. На выходе получится бобина из 1002 витков. Проволока длиной 84 метра будет уложена в 17 слоев. Итоговые габариты – диам. 44 мм, длина – 6 см.

Катушка и конденсатор подключаются к динамику по схеме, обозначенной выше, и мы получаем сабвуфер с пассивным НЧ фильтром.

Фильтр низких частот для активного и пассивного сабвуфера своими руками

Многие меломаны сталкиваются с тем, что качество автомобильных акустических систем невысокое. Фильтр для сабвуфера может быть создан своими руками, для чего требуется небольшой набор инструментов и материалов.

Предназначение

Сабвуфер — динамик для вывода низкочастотных колебаний в диапазоне 5-200 Гц. В продаже встречаются пассивный и активный варианты исполнения. При этом частоты делятся на 3 основные категории:

Фильтры предназначены для разделения звука и повышения качества. Он устанавливается для саба пассивного и активного типа, может использоваться как сумматор, который делает систему более эффективной.

Предназначение системы заключается в распределении частот между несколькими элементам вывода. Сабвуфер способен выводить только низкий диапазон, для которого он отделяется от всего потока.

Схема фильтра

При создании устройства могут применяться различные схемы. Простейший НЧ фильтр для сабвуфера называют LC. Его принцип работы обладает следующими особенностями:

  • Создаваемое сопротивление индуктивности сравнимо с частотой звука. Этот момент определяет то, что катушка пропускает низкие частоты и отделяет высокие. С повышением значения частоты увеличивается и сопротивление индуктивности.
  • Сопротивление емкости имеет обратную пропорциональность частоте сигнала, и колебания с высокой частотой затухают на входе.

Подобный пассивный фильтр НЧ прост в исполнении, поэтому его изготавливают чаще других. Более сложна в реализации схема активного фильтра. Она предусматривает применение активного элемента, который повышает эффективность устройства.

Классификация устройств проводится по основным параметрам. Порядок свидетельствует о количестве катушек. Крутизна спада АЧХ определяет то, насколько резко фильтр подавляет сигналы, которые могут стать причиной помехи.

При выборе фильтра также уделяется внимание тому, какая схема расположения динамиков применяется в автомобиле. Наибольшее распространение получили следующие:

  • 3 динамика: басовик, средний и низкие частоты, твитер. В большинстве случаев этого достаточно для реализации поставленной задачи.
  • Более сложная схема предусматривает использование отдельных динамиков для воспроизведения своей частоты.

Полосно-пропускающие, или полосовые устройства эффективно пропускают свою частоту. Полная противоположность — режекторный вариант исполнения, так как полосы вне интервала усиливаются.

Как сделать своими руками

Пассивный фильтр для сабвуфера своими руками просто изготовить благодаря использованию небольшого количества элементов. Фильтр низких частот собирается с учетом нижеприведенных моментов:

  • Сборка может проводиться по схеме, которая скачивается из сети или создается своими руками. В интернете встречается большое количество различных калькуляторов. Их применение существенно упрощает расчеты. Для этого достаточно ввести исходную информацию, и программа при применении формул рассчитывает требуемые показатели.
  • Основными параметрами, применяемыми при расчетах, являются индуктивность и емкость.
  • Простейшая схема представлена сочетанием конденсатора или катушки. Первый элемент можно приобрести в специализированном магазине, для повышения показателя проводится соединение нескольких. Катушка часто изготавливается самостоятельно, для этого применяется медная проволока и стержень из специального сплава.
  • Пайка отдельных элементов должна проводиться с особой осторожностью. Это связано с тем, что слишком высокая температура может привести к перегреву платы и некоторым другим проблемам.

После создания самодельной конструкции следует провести подключение фильтра к сабвуферу. Подключение выполняется следующим образом:

  • Фильтр подключается к сабвуферу через выход предварительного усилителя после регулятора, который отвечает за регулировку громкости. Это позволяет существенно повысить качество звука.
  • Потенциометр применяется для регулирования соотношения громкости сабвуфера и всего сигнального тракта.
  • К выходу проводится подключение усилителя мощности, который работает по классической схеме. Оба применяются для мостового соединения.

Финишный этап заключается в герметизации всех соединительных элементов. В противном случае на контактах со временем может появиться коррозия, которая станет причиной снижения проводимости. Активный изготавливается с применением управляющей платы.

Фильтр для нч динамика

Трёхполосные акустические системы, состоящие из трёх динамиков, являются самым удачным решением для высококачественного звуковоспроизведения. В них используются три типа звуковых головок. Они отличаются по размеру, конструктивным особенностям и полосе воспроизводимых частот. Для разделения всего частотного диапазона выдаваемого усилителем низкой частоты используются полосовые фильтры-кроссоверы. В них используются конденсаторы дроссели и, реже, резисторы.

Сделать своими руками фильтр для динамика НЧ очень просто.Основным элементом устройства является индуктивность или дроссель. Катушка включается последовательно с низкочастотным динамиком.

Фильтр для низкочастотного динамика

Фильтр нижних частот из дросселя и конденсатора большой ёмкости называется схемой Баттерворта второго порядка. Он обеспечивает спад частот выше частоты среза до 12 dBна октаву. Схема работает следующим образом. Индуктивность в LC контуре выполняет функцию переменного резистора. Его сопротивление прямо пропорционально частоте ивозрастает с увеличением диапазона. Поэтому высокие частоты практически не попадают на НЧ динамик. Такую же функцию выполняет и конденсатор. Его сопротивление обратно пропорционально частоте и он включается параллельно громкоговорителю.

Поскольку схема устройства должна хорошо пропускать низкие частоты и обрезать высокие, то конденсаторы такого устройства имеют большую ёмкость.Пассивный фильтр для динамика может быть выполнен по более сложной схеме. Если соединить две схемы Баттерворта последовательно, то получится устройство четвёртого порядка из двух индуктивностей и двух конденсаторов. Оно обеспечивает спад частотной характеристики низкочастотного громкоговорителя в 24 децибела на октаву.

Для того чтобы выровнять частотную характеристику и более точно согласовать схему Баттерворта и динамик, между катушкой индуктивности и конденсатором, включается резистор с небольшим сопротивлением. Для этой цели лучше использовать проволочные резисторы.

Фильтры для динамиков своими руками

Сделать фильтр для динамика совсем не сложно. Он состоит всего из двух элементов – конденсатора и катушки индуктивности. Рассчитать параметры радиоэлементов для пассивной схемы низкой частоты второго порядка проще всего на онлайн калькуляторе. Там можно задать желаемый уровень среза и сопротивление акустической головки. Программа выдаст требуемую ёмкость конденсатора и индуктивность катушки. Например, выбран уровень среза 150 Гц, а сопротивление динамика равно 4 Ом. Калькулятор выдаст следующие значения:

  • Ёмкость конденсатора – 187 мкф
  • Индуктивность катушки – 6,003 мГн

Требуемую ёмкость можно получить из параллельно соединённых конденсаторов К78-34, которые специально разработаны для работы в акустических системах. Кроме того есть обновлённая линейка конденсаторов аналогичного типа. Это KZKWhiteLine. В качестве недорогих аналогов, радиолюбители часто используют конденсаторы типа МБГО или МБГП.

Катушка индуктивности на 6 мГн наматывается на оправке диаметром 1 см и длиной 6 см. Поскольку катушка не имеет магнитного сердечника в качестве бобины можно использовать цилиндр из любого материала, на который для удобства намотки, нужно сделать щёчки. Для намотки используется медный провод типа ПЭЛ диаметром 1 мм. Длина проволоки 84 метра. Намотку нужно делать виток к витку.

Преобразователь низких частот для сабвуфера

Главную часть сабвуферов представляет собой фильтр низких частот. Зачем требуется устанавливать ФНЧ? Сабвуфер излучает звуковые сигналы низкой частоты. Если подключить усилитель сразу на сабвуфер, звучание будет таким же, как и с обычными аудиоколонками.

Блок фильтров низкой частоты

ФНЧ срезает частоты, которые не нужны, передает на входной канал усилителя только низкочастотные колебания звуковой частоты. Многие фильтры срезают сигналы меньше 20 Гц и больше 200 Гц, при этом остается бас, который слышен из сабвуфера.

Базовые виды фильтров низких частот:

  • Активный;
  • Пассивный;

Фильтр пассивного вида включает в себя только резисторы и емкости.

Фильтры не имеют в составе компоненты усиления. Главное преимущество фильтра – это конструктивная простота, малое число компонентов.

Фильтры низких частот имеют негативную сторону. Проходящий через фильтр звук уменьшает громкость, и на выходе остается слабый сигнал, требующий усиления. Для усиления такого сигнала применяют усилитель, после которого сигнал идет на главный усилитель.

Фильтры пассивного вида производят первого порядка. Во втором каскаде фильтрации нет смысла, так как сигнал звука после него уменьшается в десятки раз.

Фильтры активного вида включают в себя пассивный фильтр и усилитель частот звука, который восполняет потери от фильтра, усиливает звук на выходе. ФНЧ можно изготовить с помощью одного транзистора. Фильтры изготавливаются на микросхемах, применяются усилители звука малой мощности.

Главное преимущество фильтра низкой частоты состоит в обеспечении высокого сигнала выхода, в регулировке частот необходимого интервала. Фильтры подключают к питанию. На главном трансформаторе создают обмотку питания фильтра.

Большое число радиодеталей, сложная схема являются вторым недостатком фильтров низкой частоты.

Виды преобразователей частоты

Изобретение частотных преобразователей стало прорывом в приводах электрической машины. Изменился подход в конструировании систем приводов двигателей. Когда создавали сложную конструкцию регулирования значений момента и скорости, то за основу брали двигатели, работающие на постоянном токе. Автономные инверторы тока с двигателями переменного тока вытеснили моторы постоянного тока.

В электрических приводах двигатели короткозамкнутые, вытеснили двигатели с последовательным возбуждением постоянного тока.

Классы преобразователей частоты

Прибор, изменяющий напряжение определенной частоты входа в напряжение с другой частотой является преобразователем частоты.

Классы:

  • Двухзвенные.
  • Непосредственные.

Реверсивный частотник – непосредственный класс прибора. Преимущество состоит в прямом подключении без дополнительных сетевых приборов.

Тиристорный, транзисторный частотник – это двухзвенный инвертор. Он отличается от непосредственного инвертора. Для безопасной эксплуатации ему нужно звено постоянной величины. Для соединения с сетями общепромышленного вида нужен выпрямитель. Выпрямитель, частотник комплектуют совместно, для дальнейшей работы в одной управляющей системе.

Двухзвенные инверторы

Преобразователь частоты, с фильтром, выпрямителем, созданный с инвертором с токовым звеном, называется двухзвенным.

ЭМ – машина электрическая, АИН – инвертор автономного типа, Lф, Сф, — емкость и индуктивность, fнз – выходная частота, u – выходного напряжения при применении выпрямителей, СУВ, СУИ – управляющие системы, uнз – определение напряжения, В – выпрямитель. Включенные связи изображены пунктиром, зависят от типа прибора.

Чтобы улучшить сглаживание и качество энергии применяют фильтр LC. Схема подключения Г-образная. В схеме применяют сдвиг фаз, обмотки трансформатора включают в звезду и треугольник.

Эта схема подключения имеет высокую стоимость, используется совместно с индивидуальным трансформатором.

Выпрямительный блок бывает управляемым и неуправляемым. При управляемом выпрямителе опция регулировки напряжения достается ему или автономному инвертору. Выпрямитель должен иметь реверс и полное управление для осуществления рекуперации электроэнергии (двухкомплектный). Управление инвертором осуществляется  методом импульсов. Широко применяемые способы – широтно-импульсные.

Автономные частотники используются в большей степени.

АИТ – автономный токовый инвертор, СУИ, СУВ – управление частотниками, УВ – управляемый блок выпрямителей, Lф – индуктивность, fнз – частота на выходе, і – ток на выходе звена постоянного тока.

В автономном частотнике выходная величина – это напряжение. В автономном токовом частотнике ток — регулируемое значение. Частота коммутации имеет значение в образовании сигнала выхода заданной частоты. При повышении частоты улучшается качество синусоиды, увеличиваются потери в инверторе.

Результат работы модели инвертора на транзисторах при разных коммутационных частотах:

Частота коммутации 800 Гц

Коммутационная частота 2000 Гц

Частота коммутации 8000 Гц

Уменьшение частоты ухудшает качество тока выхода. Частоту коммутации определяют, чтобы не было пульсаций.

Индуктивность подключена последовательно, емкость параллельно. Работа инвертора образует гармоники, для их снижения применяют фильтры.

Непосредственный частотник

Напряжение сети идет по вентилям управления электрической машины. На фазах подключены частотники с реверсом.

Инвертор низкой частоты изменяет 3-фазное напряжение в 1-фазное. В и Н комплекты включаются, на выходе напряжение двухполярное. Чтобы управлять инвертором применяют законы синуса и прямоугольника.

При прямоугольном законе порядок действия следующий. Полуволна напряжения проходит, на комплект идут импульсы. Комплект работает как выпрямитель с углом опережения. Для уменьшения тока переходят в режим инвертора. Ток снижают, чтобы не было замыкания в частотнике. После паузы вступает комплект №2.

При управлении с синусом выходное напряжение меняется по синусу, а управляющий угол постоянно меняется.

Сабвуферный усилитель в автомобиль

Качественный усилитель на 100 ватт в автомобиль для сабвуфера, собранный на микросхеме ТДА7294, имеет мощность выше, чем на микросхеме ТДА1562 (на 50 Вт). В усилителе используют преобразователь на 12 вольт на две колонки по 40 Вт. В нем фильтр низких частот, размещен на плате с одной стороны, в схеме три блока.

Преобразователь сети сабвуфера

Прибор создан на драйвере КА7500. Существует блокировка перенапряжения, идет отключение, если на входе U больше 15 В. Защита недостающего напряжения уберегает от чрезмерного разряда, драйвер отключается при падении постоянного напряжения до 9 В.

Защита тока предотвращает от неисправностей транзисторов, защищает всю схему. Индикация диода зеленого цвета показывает работу в нормальном режиме, диод красного цвета сигнализирует отключение драйвера. Плавный пуск по схеме дает возможность плавно запустить преобразователь, хотя на выходе большие емкости.

Трансформатор можно изготовить самому, взять готовый от компьютера. Используются выходы на 12 и 5 В, коэффициент трансформации 2,4. Если подается напряжение 14 вольт на линию в 5 В, то получается больше в 2,4 раза. На линии 12 В выходит напряжение 33 В для питания усилителя. Частота тока переключения 50 Гц, изменяется установкой емкости.

Полевые транзисторы можно заменить мощностью выше 100 Вт на выходе.

ФНЧ и усилитель

Схема простая на одном усилителе операционного вида ТL072. Питание подается двухполярное, 12 В, стабилитроны формируют напряжение 12 вольт.

Мощный усилитель на микросхеме

В схеме применена микросхема ТДА 7294 по типовому подключению. Через необходимые цепочки R-C подключены контакты ST и MUTE.

Полезные советы сборки усилителя

  1. В силовых схемах применяйте провод достаточного сечения. Конденсатор входа С4 берите на 4700 мкФ. От него зависит мощность. На линии аккумулятора применяйте предохранитель на 10 А. Пуск инвертора предполагает знание оборудования, питание с ограничителем тока.
  2. Масса подключена удачно, без шума, фона. Легкий гул фильтра создавала микросхема LМ358, она не подходит для звука в качественном режиме. Микросхема TL072 для этих целей подходит.
  3. Частотник защищен от замыкания линии выхода питания. Корпус усилителя изготавливается по своему усмотрению, на качество звука не влияет.

Фильтр низкой частоты. Что это?


про фильтр низкой частоты для сабвуфера

     Здравствуйте.
     В связи с тем, что огромное количество народа интересуется фразой «фильтр низкой частоты для сабвуфера», решил создать страничку с некоторыми «словесными» собственными пояснениями.
      Наше ухо может воспринимать звук от 20 Герц до 20 000 Герц (причём, что ближе к 20 Гц — это бас, низкие ноты, а что ближе к 20 000 Гц — это писк, высокие ноты). Для тех, кто хочет послушать, как звучат различные частОты, предлагаю скачать маленькую программку NCH ToneGen. Её даже не надо устанавливать. Вобщем — скачиваем, запускаем. Перед нами небольшое окошко программы, куда мы забиваем число (Hz — Герцы). Например, забиваем туда «300» и жмём «Start». Теперь вы имеете представление, как звучат 300 Гц. Далее нажимаем маленькую кнопочку «-» частота меняется на «283» и т.д. Таким образом мы спускаем частоту всё ниже и слушаем, как она звучит.
     Теперь вы имеете представление, что такое частота и как она воспринимается слухом. Далее следует определиться, какая частота среза нам нужна. Частота среза — это такая частота, выше которой (т.е. при движении на «писк») звук от сабвуфера нам не нужен. Сабвуфер специально разрабатывается так, что бас он воспроизводит хорошо, а вот «верха» он воспроизводит с очень большими искажениями. Поэтому то и ставится фильтр — чтобы «убить» весь «писклявый» звук, который саб не должен играть. Итак — надо определиться, выше какой частоты мы не хотим, чтобы саб играл. Общая тенденция такая — чем меньше басовый динамик в саттелите (саттелит — колонка, с которой будет работать вместе сабвуфер), тем выше частота среза у фильтра для саба. Т.е. если в вашей колонке (к которой вы хотите пристроить сабвуфер) размер басового динамика 10 см, то саб вам понадобится с частотой среза 300 Гц. Если размер басовика в колонке 30 см, то саб понадобится с частотой среза 100 Гц. Всё конечно зависит ещё от конкретного случая. Причём, у самого саба тоже есть тенденции — если сабовый динамик маленький (напр. 20 см), то вряд ли он сможет играть самые низкие частоты — т.е. такой саб сможет играть не с 20 Гц, а например с 80 Гц вверх (тогда рационально его пустить играть повыше — например до 300 Гц). Если же размер сабового динамика большой (например 38 см), то такой саб сможет играть например с 30 Гц вверх (тогда рационально его пустить играть пониже, например — до 120 Гц). В общем случае — чем более низкие частоты играет саб, тем лучше. Высокие частоты (200 — 300 Гц) сабвуфер воспроизводит с большими искажениями (на слух).
     Вобщем, предположим, что вы определили для себя, частоту среза планируемого фильтра для саба. Далее — сами фильтры. Они бывают пассивные и активные.
     Пассивные фильтры — это огромные катушки индуктивности с конденсаторами. Таким фильтрам не требуется отдельного усилителя и отдельного напряжения питания фильтра. Пассивный фильтр напрямую подключается к сабовому динамику. В продаже бывают готовые пассивные фильтры (сразу обычно заметно катушку из толстой медной проволоки). Но вся проблема в том, что чем ниже частота среза, тем больше требуются размеры катушки. В связи с этим, для частоты среза в 400 Гц ещё реально сделать пассивный фильтр (но размеры уже получатся внушительные). А вот для частоты в 200 Гц делать пассивный фильтр нерационально — катушка получится весом примерно 10 кг (при нормальной мощности саба).
     Тут ещё есть момен — крутизна спада фильтра. Крутизна спада — это такой параметр, который показывает, как сильно звук будет глушиться выше частоты среза. Дело в том, что даже при установке фильтра звук выше частоты среза не резко «отрубается», а потихоньку затухает (если повышать частоту звука).
     Характеристикой быстроты затухания звука вверх по частоте является «порядок фильтра». Первый порядок даёт слабое затухание. Есть второй, третий, четвёртый и т.д. порядок фильтра. Четвёртый порядок даёт уже очень сильное затухание звука выше частоты среза. Так вот, если делать пассивный фильтр на частоту 400 Гц 1-го порядка, то это ещё реально, но 4-го порядка — количество деталей там будет большое и фильтр получится слишком громоздким. А затухание звука выше частоты среза нам бы желательно иметь по возможности резкое.
     Вобщем, из-за того что частоту среза сабвуфера обычно берут низкую (напр. 200 Гц), порядок фильтра высокий (напр. 4-ый порядок), конструкция пассивного фильтра отпадает (т. к. такой фильтр весил бы порядка 30 кг и имел бы размеры, сопоставимые с самим сабвуфером), а применяют активные фильтры. В активном фильтре несложно сделать высокий порядок фильтрации и низкую граничную частоту (радиодетали мизерных размеров). Но активному фильтру низких частот (ФНЧ) обязаиельно требуется отдельное питание и отдельный усилитель на сабвуферный канал. Также часто может понадобиться сумматор — его задача из правого и левого канала звука сделать некий один канал, для сабвуфера.
     Схем активных ФНЧ различного порядка довольно много. Выкладываю некоторые, которые сохранял у себя на компе.

Фильтр низких частот | Микросхема

Как можете видеть, уважаемые радиолюбители, в комментариях к схемам усилителей звуковой частоты очень часто проскакивают вопросы новичков такого характера: «посоветуйте, как сделать фильтр низких частот для этого усилителя?»

На такие вопросы приходится отвечать, обычно, типовыми фразами или отсылкой к имеющимся схемам, за что, конечно же, прошу прощения. У нас на сайте есть достаточное количество схем, чтобы можно было без труда собрать качественный ФНЧ для использования с любым усилителем мощности. Приведу ссылки на простые и, в то же время, довольно кондиционные фильтры низких частот:

Неплохие результаты показывают наипростейшие фильтры низких частот: схемы в комментариях к статье.

Однако сегодня мы с вами будем собирать достаточно эффективный фильтр низких частот для сабвуфера.

Всем известно, что акустический спектр расположен в диапазоне 20…20 000 Гц. 20 Гц – это достаточно низкая частота. Вообще, на низких частотах ухудшается восприятие направленности звука или, скажем так, его локализация. Здесь я немного поясню. На частотах ниже 150 Гц разделение звукового сигнала по каналам не имеет смысла. Акустические системы, оснащённые сабвуфером, имеют, как правило, конфигурации 2.1, 5.1, 7.1. Сабвуфер в них один. В сабвуферном канале идёт смешение всех других каналов и срез частот от 20 Гц (не всегда) до какой-то верхней частоты (100, 130, 150 Гц).

Для качественного воспроизведения звукового тракта выделение низких частот в отдельный канал обязательно. В качестве удачного решения я предлагаю такую схему ФНЧ, ограничивающего частоту акустического спектра в районе 20 — 100 Гц.

На схеме можно видеть два каскада, каждый из которых собран на операционном усилителе. В качестве активного элемента в схеме применяется сдвоенный операционный усилитель типа TL082, TL062, NE5532.

Первый ОУ служит для смешения каналов и усиления входного сигнала (предусиления). Уровень выходного сигнала, снимаемого с первого операционника, зависит от сопротивления переменного резистора R3 номиналом 47 кОм.

На втором ОУ собран непосредственно сам фильтр среза. Частота среза зависит от номиналов деталей обвязки данного операционного усилителя. Частоту можно регулировать в достаточно широких пределах: от 30 Гц до 150 Гц. Регулировать частоту среза можно сдвоенным переменным резистором R5, R7 номиналом 22 кОм.

Перечень радиодеталей, используемых в фильтре низких частот:

  • R1 = 39 кОм
  • R2 = 39 кОм
  • R3 = 47 кОм
  • R4 = 10 Ом
  • R5 = 22 кОм
  • R6 = 4,7 кОм
  • R7 = 22 кОм
  • R8 = 4,7 кОм
  • R9 = 10 Ом
  • R10 = 220 Ом
  • C1 = 39 пФ
  • C2 = 0. 1 мкФ
  • C3 = 0.1 мкФ
  • C4 = 0.2 мкФ
  • C5 = 0.4 мкФ
  • C6 = 0.1 мкФ
  • C7 = 0.1 мкФ
  • IC1 = TL062

Схема очень чувствительна к качеству радиодеталей, особенно к конденсаторам. Их допуск должен быть не более 5%. Проверить работоспособность фильтра можно с помощью звукового генератора. В итоге получается универсальный ФНЧ для сабвуферного канала практически для любой акустической системы.

Топология печатной платы и расположение радиодеталей на ней:

Обсуждайте в социальных сетях и микроблогах

Метки: акустика, предусилитель, сабвуфер, фильтр НЧ

Радиолюбителей интересуют электрические схемы:

Активные фильтры к сабвуферам
Кроссовер для сабвуфера

Усилители и ФНЧ для сабвуфера | Мастер Кит DIY

Понравилась статья? Ставь палец вверх и будешь видеть наши новости чаще!

Звуковоспроизводящие системы являются неотъемлемой частью современной жизни. Их сложность и стоимость изменяются в широчайших пределах – от простейших монофонических усилителей на паре транзисторов до многополосных профессиональных систем воспроизведения для кинотеатров IMAX и концертных площадок.

Поэтому задача оптимизации сложности и стоимости систем воспроизведения звука была всегда достаточно актуальна, в особенности для индивидуального бытового применения.

Как известно, человек с помощью двух своих органов слуха, подключенных к «центральному процессору» – мозгу, может различать направление прихода звуковых колебаний именно из-за того, что человеческие уши разнесены в пространстве на 15-20 сантиметров. Этого оказывается достаточно, чтобы определить направление на источник звука из-за разности фаз приходящих звуковых волн.

Но не все звуки воспринимаются человеческим слухом одинаково. Каждый из нас наверняка замечал, что если положение источника достаточного высокого звука определяется без труда, то положение источника низкого звука, даже при его высокой громкости определить затруднительно. И это связано с размером базы «датчиков измерительной системы», образуемой человеческими ушами. Если длина волны звуковых колебаний существенно больше измерительной базы, то мозг не может «просчитать» разность фаз между звуковыми волнами, воспринимаемыми правым и левым ухом.

Этим эффектом ловко воспользовались инженеры, проектирующие звуковоспроизводящие устройства. При построении многополосной многоканальной звуковой системы (стерео, квадро и т.д.) можно неплохо сэкономить, используя одну звуковую колонку для воспроизведения низких частот всех каналов (примерно от 20 до 160 Гц). Ведь человек все равно не различит направления на источник низкой частоты. Такая колонка имеет сейчас вполне устоявшееся название сабвуфер (англ. subwoofer). Ну, а звуковая панорама более высоких частот будет воспроизводиться несколькими колонками обычным способом. Сабвуфер, как правило, имеющий приличные размеры, можно, кстати, расположить где-нибудь под столом, тумбой, или в багажнике автомобиля, где он не будет занимать дефицитное место.

Рис.1

Сабвуферы бывают пассивными, которые подключаются к общему усилителю звуковой частоты, или активными, имеющими свой индивидуальный усилитель, часто встроенный в низкочастотную колонку.

Любители самостоятельного конструирования звуковых систем используют фильтры низких частот (ФНЧ) и специализированные усилители для построения сабвуферного канала.

Компания Мастер Кит традиционно предлагает широкий ассортимент DIY-модулей для звукоусилительной и звуковоспроизводящей техники. Некоторые устройства специально предназначены для использования при изготовлении низкочастотного канала звуковоспроизведения, другие могут быть с успехом применены в этом канале, хотя могут решать более широкие задачи. В настоящем обзоре мы рассмотрим и те, и другие.

Все рассматриваемые устройства выполнены в бескорпусном исполнении и предполагают размещение либо в самостоятельно изготавливаемом корпусе, либо в корпусе, куда модуль встраивается.

В конце обзора вы найдете таблицу, которая поможет быстро сориентироваться в характеристиках модулей и сделать правильный выбор.

Напомним, что многие устройства Мастер Кит продаются наборами, в которых подобраны подходящие друг другу или дополняющие друг друга модули. Цена набора меньше, чем сумма цен его составляющих, поэтому, покупая набор, вы можете хорошо сэкономить!

1. BM2042 — монофонический усилитель низкой частоты, в основе которого – микросхема TDA

Рис.2 

Усилитель имеет минимальные габариты, определяемые, в основном, двум электролитическими конденсаторами емкостью 1000 мкФ каждый, индуктивностью и самой микросхемой. Эта интегральная микросхема представляет собой УНЧ класса АВ. Благодаря широкому диапазону питающих напряжений и возможности отдавать ток до 10 А в нагрузку, микросхема обеспечивает одинаковую максимальную выходную мощность на нагрузках от 4 Ом до 8 Ом. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления и возможность параллельного включения нескольких ИМС для работы с низкоомной нагрузкой (менее 4 Ом). Управление режимом работы ИМС осуществляется при помощи переключателя, расположенного на плате. Совместно с фильтром, пропускающим только низкие частота, усилитель вполне можно рекомендовать для построения низкочастотного сабвуферного канала.

2. Модуль MP3116btl является усилителем низкой частоты класса D, построенным на популярной микросхеме TPA

Рис.3

Усилитель отлично подойдет как для сборки нового усилителя, так и для модернизации старого усилителя до современного уровня.

Микросхема TPA3116 включена в так называемом BTL режиме. За счет этого достигается 150Вт выходной мощности на канал с малыми интермодуляционными помехами и низким коэффициентом нелинейных искажений. Благодаря высокому КПД микросхемы (более 90%),  для ее работы не требуются массивные радиаторы и системы активного охлаждения. На плате установлен регулятор громкости, что делает усилитель более удобным в применении. По умолчанию на входе усилителя установлен фильтр для среза высоких частот, что позволяет сразу использовать усилитель для построения сабвуфера. Для отключения фильтра необходимо лишь удалить один конденсатор.

Более подробно об усилителях на основе TPA3116 можно прочесть в статье Маленький — не обязательно плохой! Усилитель НЧ D-класс 2х50Вт с регулировкой тембра.

3. BM2033 – это готовый к применению модуль монофонического усилителя на основе микросхемы TPA7294 мощностью 100 Вт.

Рис.4

Микросхема TPA7294 представляет собой усилитель низкой частоты класса АВ.

Она предназначена для использования в качестве AB усилителя звука класса Hi-Fi. Благодаря широкому диапазону питающих напряжений и высокому выходному току, TDA7294 способна обеспечивать высокую выходную мощность при сопротивлении динамиков 4 Ом и 8 Ом.

TDA7294 имеет низкий уровень шума, низкий уровень искажений, хорошее подавление пульсаций. Микросхема имеет встроенную защиту от короткого замыкания и схему отключения при перегреве. Встроенная функция подавления (Mute) упрощает дистанционное управление усилителем, предотвращая появления шумов.

Этот интегральный  усилитель прост в использовании и для его полноценной работы требуется не так много внешних компонентов. Применения радиатора с использованием теплопроводной пасты является обязательным.

4. Активный фильтр для сабвуфера BM2115 избавит от установки громоздкого пассивного фильтра низкой частоты на выходе усилителя мощности при проектировании низкочастотного усилительного каскада.

Рис.5

Этот неинвертирующий фильтр второго порядка выполнен на сдвоенном операционном усилителе LM358. Частота среза фильтра – 100 Гц. Установленный на плате светодиод индицирует наличие напряжения питания, подстроечным резистором можно регулировать уровень входного сигнала. Фильтр устанавливается между линейным выходом источника сигнала и входом усилителя мощности сабвуфера. Геометрия устройства позволяет монтировать его в разрыв сигнального провода. Для подключения питающего напряжения и сигнальных проводов предусмотрены парные клеммные винтовые зажимы.

5. Набор для самостоятельной сборки фильтра низкой частоты NM0103 позволит не только улучшить навыки самостоятельной пайки начинающему электронщику, но и получить вполне функциональное устройство, необходимое для создания сабвуферного канала звукоусиления.

Рис.6

Частота среза фильтра может быть установлена 60 Гц или 80 Гц с помощью применения различных конденсаторов, входящих в состав набора.

Конструктор предназначен для детей старшего школьного возраста, а так же для радиолюбителей любой квалификации. Работа с набором не требует специальной подготовки и позволяет получить навыки конструирования и сборки простых радиотехнических устройств.

Фильтр низких частот может применяться для построения сабфуверов, в составе домашних кинотеатров любой мощности, а так же для автомобильных и портативных сабвуферов.

6. Набор для самостоятельной пайки NM0106 позволяет собрать оконечный усилитель низкой частоты, работающий в двух режимах: двухканальный стерео режим, и режим моста. В режиме моста усилитель как нельзя более подходит для сабвуфера мощностью до 150 Вт.

Рис.7

Усилитель мощности предназначен для передачи в нагрузку максимальной мощности полезного сигнала при минимально возможном уровней нелинейных и частотных искажений. Он построен на микросхеме TDA7294, которая за годы эксплуатации с момента её выпуска в 1996 году зарекомендовала себя надежным и качественным устройством. Усилитель содержит в себе два одинаковых канала и может использоваться как стереоусилитель с номинальной выходной мощностью 70Вт на канал, либо как мостовой усилитель.

7. Модуль NM0605 несколько выбивается из тематики данного обзора, но имеет к нему непосредственное отношение, поскольку представляет собой автомобильный преобразователь, на выходе которого получается двухполярное напряжение для питания автомобильных усилителей низкой частоты.

Рис.8

Этот набор для самостоятельной пайки представляет собой мощный DC-DC преобразователь, построенный по схеме «PUSH-PULL». Преобразователь позволяет работать с нагрузкой общей мощностью до 200Вт. Он построен на микросхеме ШИМ-контроллера SG3525, которая преобразовывает постоянное входное напряжение в переменное напряжение высокой частоты. В качестве источника питания модуля может выступать напряжение, подаваемое с автомобильного генератора или аккумулятора. Таким образом , можно обеспечить автономное питание звукоусилительной техники там, где нет стационарных источников электроэнергии.

Модуль NM0605 входит в состав нескольких комплектов, предлагаемых на специальных условиях компанией Мастер Кит:

8. Набор для пайки NM2012M предназначен для сборки монофонического усилителя низкой частоты, который обеспечивает до 200 Вт мощности в нагрузке.

Рис.9

Устройство базируется на схемном решении «ROD ELLIOTT P3A AMPLIFIER». В схеме используется автосмещение напряжения на базах транзисторов, благодаря чему не требуется выставлять их токи покоя. Усилитель питается двухполярным напряжением от 12 до 50 вольт и может работать на нагрузку от 2 до 16 ом. Он обладает малым коэффициентом нелинейных искажений, коэффициентом усиления 34 дБ, и расширенным частотным диапазоном от 15 до 25000 Гц.

10. Модуль цифровой обработки сигналов BM2114dsp также может быть использован в том числе и для построения низкочастотного канала усиления. Но возможности этого устройства настолько широки, что низкочастотный канал будет являться только небольшой частью системы, которую можно спроектировать на основе модуля.

Рис.10

Устройство представляет собой встраиваемый модуль с установленным Digital Signal Processor (DSP) ADAU1701. Такой процессор осуществляет цифровую обработку звуковых сигналов, поступающих на его вход, и направляет обработанные сигналы на несколько выходов в соответствии с заложенной программой.

Для подключения доступно 2 RCA входа и 4 RCA выхода. Для настройки процессор подключается через USB-порт к компьютеру. Программирование производится в визуальной среде Analog Devices SigmaDSP, бесплатно распространяемой разработчиком процессора. При программировании, заключающимся в перетаскивании и соединении элементов звукового тракта на экране компьютера, доступны фильтры, эквалайзеры, задержки, компрессоры, лимиттеры, индикаторы и детекторы уровня, детекторы клиппинга, регуляторы уровня, микшеры и многое другое. Логические блоки можно соединять в любом порядке, наращивать, комбинировать. Например, можно использовать внешний регулятор для усиления баса и настроить компрессор для защиты сабвуфера.

Цифровой модуль предназначен для встраивания в усилители, активные колонки, автомобильные или домашние аудиосистемы.

Модуль позволяет также заменить собой кроссоверы, корректировать АЧХ системы эквалайзерами, устройствами Room Correction, вводить задержки в разные каналы для компенсации расстояния между динамиками, защищать динамики от перегрузки введением лимитеров.

Более подробно об использовании модуля BM2114dsp можно ознакомиться в серии статей на нашем сайте:

BM2114dsp — Цифровой процессор звука, обзор. Часть 1

BM2114dsp — Цифровой процессор звука. Часть 2: разрабатываем реальный звуковой тракт

BM2114dsp — цифровой процессор звука. Часть 3: внешние элементы управления, генерация и обработка звуковых сигналов

Делись с друзьями, переходи по ссылкам на сайт, подписывайся на наш канал Мастер Кит DIY и жми лайк, чтобы не пропустить новые публикации.

Получение правильных настроек сабвуфера для домашнего кинотеатра

Управление низкими частотами — это термин, который часто обсуждают на онлайн-форумах и в технических руководствах пользователя. На самом деле мы говорим о настройке вашего AV-ресивера для правильной работы с сабвуфером. Есть настройки на ресивере объемного звучания и есть настройки на сабвуфере. Получение правильных настроек сабвуфера для домашнего кинотеатра означает правильную настройку и понимание того и другого.

Это пошаговое руководство поможет вам в этом.После настройки основных параметров вы можете углубиться в свою систему. Это поможет вам внести еще более конкретные настройки и корректировки. Правильные настройки сабвуфера почти всегда влияют на всю вашу систему. Это того стоит для тех, кто хочет получить наилучшие впечатления от просмотра фильмов или прослушивания музыки.

Определение терминов

Прежде чем мы начнем, давайте определим некоторые важные термины, которые вам необходимо знать:

  • Кроссовер нижних частот: Частота, ниже которой будет работать ваш сабвуфер.Выше этой частоты ваши основные динамики воспроизводят частоты для всего, что отправляется на низкочастотные эффекты или субканал. Кроссовер низких частот обычно изменяется от 40 Гц до примерно 160-200 Гц.
  • Кроссовер высоких частот: Частота, выше которой ваши динамики будут работать. Эта настройка обычно ассоциируется с сабвуфером, который имеет выходы уровня динамиков для подключения сателлитных динамиков. Кроссовер высоких частот обычно устанавливается на сабвуферы, у которых есть эта функция.
  • Большие динамики: Это действительно полнодиапазонные динамики с частотой воспроизведения до 20 Гц.
  • Маленькие динамики: это любые динамики, которые не воспроизводят до 20 Гц.
  • LFE: Означает эффект низкой частоты и является выделенным каналом «.1» в миксе объемного звучания 5.1 или 7.1. С каналом LFE связана определенная информация, которая улучшает музыку, взрывы и научно-фантастические среды.
  • Оба или LFE + Main: Большинство систем имеют режим, в котором низкие частоты ниже точки кроссовера AV-ресивера передаются как на сабвуфер, так и на основные динамики.Вы можете смело экспериментировать с этим режимом. По моему опыту, это дает неожиданные результаты, и этого следует избегать.

Настройки сабвуфера для домашнего кинотеатра: общая картина

Ресиверы объемного звучания различаются по способу управления низкими частотами. Как правило, они обеспечивают либо глобальную настройку для настройки частоты низких частот, либо настройку низких частот для каждого канала. По идее, вы хотите дополнить свои колонки сабвуфером. Это обрабатывает частоты, которые они не могут воспроизвести — или не могут воспроизводить с достаточным авторитетом.

Сабвуфер по своей конструкции обрабатывает частоты, которые заставляют ваши основные динамики плакать по своей маме. Для получения правильных настроек сабвуфера для домашнего кинотеатра необходимо правильно настроить каждый компонент. Им нужно работать друг с другом, а не друг против друга.

Если вы неправильно настроите управление басами, вы обнаружите, что ваши низкие частоты могут быть мутными. Это действительно приводит к получению звука ниже номинального. Я бывал в комнатах, где сабвуфер воспроизводил такие высокие частоты, что вы могли слышать диалоги из 10-дюймового вуфера! Это НЕ то, как вы хотите настроить свой сабвуфер.

Помимо мутного звука, неправильная установка кроссовера не позволяет сабвуферу увеличивать громкость так, как он был разработан. Но он также делает кое-что еще. Если ваши динамики настроены неправильно, они будут принимать частоты, на которые они никогда не рассчитывались. То, что они не могут воспроизводить 20 Гц, не означает, что они не пытаются как сумасшедшие!

В результате получается мутный звук во всем диапазоне частот, для которого они лучше подходят. Просто все вокруг плохо.Из-за этого мы хотим быть уверены и оптимизировать наши настройки.

Как кроссовер помогает правильно настроить сабвуфер

Кроссовер встроен в каждую двухполосную или большую акустическую систему. Он контролирует, какие частоты какому драйверу идут. Без кроссовера твитер получал бы тот же сигнал, что и вуфер, и наоборот. Всегда лучше, когда каждый драйвер получает тот диапазон частот, для которого он разработан. Теперь, если вы возьмете этот принцип и примените его к сабвуферу, вы получите то же самое.Сабвуфер подобен низкочастотному динамику для ваших основных динамиков — только тот, который отделен сам по себе.

Установите кроссовер на частоту, при которой ваши основные динамики могут комфортно обрабатывать звук выше точки кроссовера. Сабвуфер позаботится обо всем, что ниже этой точки. THX рекомендует 80 Гц для большинства систем. Однако некоторые сателлитные колонки не могут воспроизводить очень низкие частоты. И наоборот, некоторые (конечно, не все) большие колонки типа «башня» воспроизводят почти полнодиапазонный звук. Для этого могут потребоваться пользовательские настройки.

Работа с разными динамиками

Некоторые системы упрощают настройку кроссовера, поскольку все динамики совпадают и имеют одинаковую частотную характеристику. В других системах настройка кроссовера будет сложнее, потому что ваши основные динамики будут звучать ниже, чем ваши окружающие. В этих системах мы рекомендуем установить кроссовер на частоту, необходимую для самого маленького динамика в системе. Это означает, что один динамик не так низок, как другие.

Есть исключение из этого правила, однако мы не рекомендуем устанавливать кроссовер выше 100–120 Гц независимо от ваших динамиков.На таких высоких частотах ваш сабвуфер, скорее всего, будет издавать приглушенный звук. Если у вас более качественные основные динамики, но вы используете пару сателлитов в качестве окружающих, подумайте о том, чтобы установить более крупные динамики. Это может оставить некоторые пробелы в окружении, но я предпочитаю отдавать предпочтение тому, откуда исходит большая часть моего звука — и это впереди.

Проверка вашей работы

Одним из лучших инструментов для проверки вашей работы при наборе настроек сабвуфера для домашнего кинотеатра является изменение частоты низких частот.Это тон, который начинается с более высокой частоты и спадает с низкой, показывая вам, как именно ваша система обрабатывает переход от основного динамика к вспомогательному.

Вы можете найти такие тона развертки в любом фильме, сертифицированном THX. Просто найдите логотип THX на передней панели, вставьте фильм и найдите приложение THX Optimizer в разделе «Дополнительно» системы меню. Если при выполнении этого теста происходит резкое падение частот, возможно, вам придется либо изменить частоту кроссовера, чтобы она была выше. Возможно, вам даже придется немного переставить субмарину. Это может помочь вам увидеть, изменяет ли он акустические эффекты на низких частотах.

Вам нужен приятный плавный переход от начальной частоты 200 Гц к конечной частоте 20 Гц. У вас никогда не будет идеально плавного перехода, но вы хотите приблизиться к нему как можно ближе. Используйте этот тест, чтобы установить оптимальную настройку кроссовера.

Настройки кроссовера оптимизатора THX

Для получения правильных настроек сабвуфера необходимо знать размер громкоговорителей.Мы определили большие и малые динамики выше, однако, это требует некоторого повторения, потому что… ну, честно говоря, никто не хочет меня слушать. Меня не волнует, если ваши динамики 6 футов высотой — если они не могут воспроизводить до 20 Гц, вы должны установить их на «Маленький». Таким образом, настройка размера динамика вообще не соответствует размеру динамика. Речь идет о расширении частоты, особенно в нижней части.

Экранное меню настройки динамиков Yamaha

Когда вы устанавливаете динамик на маленький, вы позволяете сабвуферу выполнять свою работу. И это хорошо. Это снижает нагрузку на динамик, связанную с воссозданием самых низких частот (которые перемещают драйвер больше, чем более высокие частоты, хотя и с меньшей скоростью). В конечном итоге это дает новую жизнь вашим основным динамикам. Теперь они могут воспроизводить частоты, с которыми они наиболее близки и способны. И ваш сабвуфер тоже «счастлив», потому что он привлекает внимание низкими басами. Это действительно беспроигрышный вариант, как ни крути.

Как работает канал LFE

Таким образом, установка для динамика Small позволяет сабвуферу заниматься чем-то другим, кроме воспроизведения этого выделенного канала LFE (помните это?).LFE жестко запрограммирован в звуковую дорожку 5.1 или 7.1, но настройки управления низкими частотами добавляют к обязанностям сабвуфера, подавая им те надоедливые частоты, которые теряются на ваших основных динамиках.

И мы не предполагаем, что вы, возможно, не захотите экспериментировать с некоторыми из этих настроек, но важно понимать, что происходит и как управление басами повлияет на вывод ваших низких частот. Вы хотите слышать все, и вы хотите услышать это наилучшим образом.

Перенаправление низкочастотной информации на ваш сабвуфер — отличный способ убедиться, что эти дозвуковые удары и глубокие басовые ноты получают должное звучание, которого они заслуживают.У меня были колонки Tower с частотой 32 Гц, и я все равно установил их на Small. В то время это казалось нелепым, но, в конце концов, звук стал намного лучше, а основные динамики показывали средние басы и выше.

О самом сабвуфере

Если у вас есть способный AV-ресивер с адекватными регуляторами управления басами (кроссовером), всегда устанавливайте кроссовер низких частот сабвуфера на максимальное значение. Таким образом, кроссовер на сабвуфере не будет совпадать с кроссовером вашего AV-ресивера.Если вы когда-нибудь заметите огромный пик в точке кроссовера — который нельзя устранить, немного переместив сабвуфер — тогда не стесняйтесь набрать кроссовер назад, чтобы посмотреть, сможете ли вы немного сузить его. Но в целом вы хотите убедиться, что сабвуфер свободен и свободен для воспроизведения всего, что ему дано.

Также есть фазовые регуляторы на сабвуфере. У некоторых есть переключатель, который находится в положении 0 (синфазно) или 180 (не совпадает по фазе), в то время как другие сабвуферы имеют вращающийся диск. Если вы не можете получить плавный отклик на сабвуфере и не можете переместить его в новое место, поэкспериментируйте с этим переключателем.Регулировка фазы на сабвуфере очень похожа на то, что происходит, когда вы перемещаете его по стене. Он немного регулирует форму волны, что, в свою очередь, меняет место пиков в комнате. Мы всегда стараемся добиться наилучшего звука при настройке 0, но регулировка фазы может быть спасением, когда все остальное терпит неудачу.

Устанавливая громкость на сабвуфере, я обычно начинаю с более низкого уровня, пока не пойму, насколько громким он будет при воспроизведении моих фильмов и музыки. Как только вы знаете, что не собираетесь сдуваться, вы обычно можете установить его на средней точке и продолжить оттуда.После настройки AV-ресивер будет управлять громкостью с этого момента. Эти особые настройки сабвуфера для использования в домашнем кинотеатре гарантируют, что вы полностью используете потенциал каждого компонента.

Теперь экспериментируйте!

Надеюсь, этой информации достаточно для того, чтобы вы попрактиковались. После небольшой практики получение правильных настроек сабвуфера займет очень мало времени. Что вам действительно нужно, так это система, которая играет хорошо и громко, красиво и тихо, но без искажений. Используйте эти основные принципы, и вы добьетесь превосходного звука в домашнем кинотеатре, который вызовет у ваших соседей зависть… или действительно, очень злость, в зависимости от того, пригласите ли вы их послушать вместе с вами!

Есть ли другие предложения по получению наилучших низких частот или настройке сабвуфера? Дайте нам знать в комментариях ниже.

Справочные статьи: Приложение для управления сабвуфером MartinLogan

«Вернуться на главную страницу поддержки
Приложение для управления сабвуфером: фильтр низких частот (кроссовер)

Создано: 17 июля 2018 г. | Обновлено: 24 августа 2018 г.

Экран фильтра нижних частот позволяет настроить частоту нижних частот для левого и правого (RCA или уровень динамика) входов. Этот параметр не применяется к входам LFE (RCA или XLR), вместо этого задача управления низкими частотами возлагается на ваш аудио / видеопроцессор.

Сабвуферы

Dynamo обеспечивают исключительную производительность как в 2-канальных (левый вход / правый вход), так и в многоканальных (LFE вход) системах домашнего кинотеатра. Dynamo 800X, 1100X и 1600X предлагают возможность подключения как Left In / Right In, так и LFE In, что позволяет достичь оптимальной настройки для 2-канального прослушивания, сохраняя при этом возможность прослушивания в многоканальном (кино) режиме. При прослушивании стереозвука система достигает оптимальной интеграции музыки с сабвуфером, играющим на частотах ниже самой низкой частоты отклика переднего динамика.Во время просмотра фильма трек LFE и низкие частоты из окружающих звуков могут подаваться на сабвуфер с использованием настроек кроссовера (низких частот) из системы управления басами процессора.

Как правило, фильтр нижних частот должен быть установлен на значение, приблизительно равное (или ниже) 70% самой низкой частотной характеристики основного динамика. Например, частотная характеристика вашего динамика понижается до 43 Гц. 70% от 43 Гц равняется 30,1, поэтому вам следует установить фильтр нижних частот сабвуфера на 30 Гц. Мы советуем, что после того, как вы попробуете рекомендуемые настройки, используя приведенную выше формулу, вы также должны попробовать окружающие настройки.Если вы не уверены в низкочастотной характеристике основного динамика, начните с настройки 35 Гц. Экспериментируя с разными настройками, вы ничему не навредите.

Помните, потому что эта настройка применяется только к левому / правому входам. Этот параметр не используется, если ваш сабвуфер подключен только через вход LFE. Однако, если вы используете беспроводную систему SWT-X для подключения канала LFE или Dynamo 600X в качестве канала LFE (подключенного через правый вход / вход LFE), вам нужно будет установить фильтр низких частот в положение Bypass.

Bypass: Выберите эту опцию, если вы планируете использовать управление низкими частотами вашего ресивера / процессора для установки фильтра низких частот.

Третий порядок: Если вы используете левый / правый входы сабвуфера, выберите эту опцию, чтобы использовать кроссовер третьего порядка для регулировки характеристик спада верхних частот вашего сабвуфера по мере приближения к настройке частоты фильтра нижних частот. Фильтр третьего порядка имеет крутизну 18 дБ на октаву — более медленный спад, чем фильтр четвертого порядка.Для большинства приложений идеально подходит кроссовер третьего порядка.

Четвертый порядок: Если вы используете левый / правый входы сабвуфера, выберите эту опцию, чтобы использовать кроссовер четвертого порядка для регулировки характеристик спада верхних частот вашего сабвуфера по мере приближения к настройке частоты фильтра нижних частот. Фильтр четвертого порядка имеет крутизну 24 дБ на октаву — более быстрый спад, чем фильтр третьего порядка.

Советы по установке правильной частоты кроссовера сабвуфера

Частота кроссовера вашего сабвуфера — это частота, при которой ваши динамики начинают спадать, и ваш сабвуфер начинает звучать низкочастотными эффектами и басовыми нотами.Большинство современных AV-ресиверов оснащены программой автоматического эквалайзера, которая автоматически назначает правильную частоту кроссовера в зависимости от возможностей ваших громкоговорителей. Обычно лучше оставить эти настройки на месте.

Если вы используете AV-процессор, предусилитель или сабвуфер DSP для регулировки частоты кроссовера в двухканальной системе или системе объемного звучания, вот несколько советов, которые помогут добиться максимальной производительности. Как и в случае с любыми другими функциями управления басами, это помогает критически послушать и поэкспериментировать для достижения наилучшего звучания.

  • Если вы знаете частотный диапазон вашего динамика, установите точку кроссовера примерно на 10 Гц выше самой низкой частоты, с которой ваши колонки могут нормально работать.
  • Наиболее распространенная рекомендуемая частота кроссовера (и стандарт THX) составляет 80 Гц.
  • Цифры ниже обозначают общие рекомендации по частотам кроссовера динамика / сабвуфера.
    • Настенные или крошечные «сателлитные» динамики: 150-200 Гц.
    • Малый центр, объемный, книжная полка: 100–120 Гц.
    • Средний центральный, объемный, книжная полка: 80-100 Гц.
    • Большой центр, объемный звук и книжная полка: 60-80 Гц.
    • Очень большой центральный, объемный, книжная полка: 40-60 Гц.
    • Башенные колонки с низкочастотными динамиками 4–6 дюймов: 60 Гц.
    • Tower с низкочастотными динамиками 8–10 дюймов: 40 Гц или большой / полнодиапазонный (т.е. полнодиапазонный).
  • Если вы не уверены в идеальной частоте кроссовера для вашего динамика, попробуйте наш инструмент SVS Subwoofer Matching Tool, который порекомендует идеальный сабвуфер SVS для ваших динамиков и подскажет вам лучшую частоту кроссовера.
  • Прослушайте плавный переход между динамиками и сабвуфером. В идеале смешивание должно быть настолько плавным, что вы не сможете локализовать бас, и все будет играть в унисон.
  • Если вы замечаете усиление низких частот на частоте кроссовера, попробуйте отрегулировать громкость, чтобы она соответствовала выходной мощности ваших основных динамиков.
  • Чтобы глубже погрузиться в изучение частот кроссовера, ознакомьтесь с нашим учебником по Digital Bass Management Primer.

Что такое фильтр нижних частот и как работают фильтры низких частот? — Мой новый микрофон

Изучая и практикуя производство музыки или звуковую технику, вы обязательно столкнетесь с фильтрами нижних частот.Фильтры нижних частот — мощные инструменты, которые используются в эквализации и в общем звуковом дизайне.

Что такое фильтр нижних частот? Фильтр нижних частот (LPF) — это процессор аудиосигнала, который удаляет нежелательные частоты из сигнала выше определенной частоты среза. Он постепенно отфильтровывает (ослабляет) высокие частоты выше его частоты среза, позволяя проходить нижним частотам, в идеале без каких-либо изменений.

В этой статье мы подробно рассмотрим фильтры нижних частот, расскажем, как они работают, как они устроены и как они используются не только в эквалайзере, но и в других приложениях, связанных со звуком.

По завершении этой статьи я понял, насколько глубока теория фильтров. Стремясь сделать эту статью краткой (она все еще превышает 6000 слов), я включил только самую важную информацию о звуковых фильтрах нижних частот. Пожалуйста, используйте оглавление, чтобы обойти это руководство!


Содержание


Что такое фильтр нижних частот?

Первый абзац ответа — достойное определение фильтра нижних частот, но он оставляет многое для объяснения.Итак, давайте обсудим, что такое фильтр нижних частот и как он работает, начиная с основ.

Итак, мы знаем, что фильтр нижних частот пропускает низкие частоты ниже определенной точки среза, отсюда и название. Фильтры нижних частот иногда называют фильтрами верхних частот, название которых изображает обрезание высоких частот выше определенной точки среза.

Идеальный фильтр нижних частот

В идеале, мы бы хотели, чтобы наш фильтр нижних частот просто отсекал все частоты выше его частоты среза и оставлял все частоты ниже его частоты среза нетронутыми.Этот тип «кирпичной стены» фильтра нижних частот недоступен на практике, но теоретически он будет выглядеть так:

На этой простой диаграмме у нас есть частота (в герцах) по оси абсцисс и относительная амплитуда (в децибелах) по оси ординат.

Герц означает количество циклов в секунду. Поскольку аудиосигналы являются сигналами переменного тока, они имеют циклическую форму волны. При преобразовании в звуковые волны эти формы волны можно услышать как колеблющиеся молекулы воздуха. Общепринятый диапазон слышимости людей составляет от 20 Гц до 20 000 Гц.Таким образом, большинство аудиосигналов попадают в этот диапазон (во избежание обилия непонятной информации).

Децибелы (десятая часть бел) — это относительные единицы измерения, используемые для выражения отношения одной величины к другой в логарифмической шкале. Что касается амплитуды сигнала, разница в 3 дБ будет представлять собой удвоение / уменьшение вдвое значений мощности (мощности и, в конечном итоге, интенсивности звука), а разница в 6 дБ будет удвоением / уменьшением вдвое основных величин мощности (напряжение / ток и, в конечном итоге, уровень звукового давления). ).

Статьи по теме:
• Что такое децибелы? Полное руководство по дБ для аудио и звука
• Единицы измерения и префиксы в звуковой и аудиоэлектронике

На графике выше мы имеем резкую частоту среза на уровне 1 кГц. Никакие частоты выше этого среза не передаются, и все частоты ниже этого среза передаются безупречно.

Хотя это невозможно получить аналоговыми или цифровыми средствами, существуют способы приблизить этот тип фильтра нижних частот.

В аналоговых ФНЧ увеличение порядка фильтрации приближает нас к крутизне идеального фильтра около частоты среза.

Цифровые фильтры

In можно также запрограммировать для приближения к такому идеальному «кирпичному» фильтру.

Подробнее об этом позже.

Реальные фильтры нижних частот

Хотя мы можем довольно близко подойти к идеальным ФНЧ, обычно у нас будет какой-то спад после частоты среза, а не строгий срез.

Таким образом, типичный фильтр нижних частот можно легко визуализировать на следующей диаграмме эквалайзера:

Мы можем видеть на изображении, что выше определенной частоты фильтр начинает ослаблять / фильтровать частоты с устойчивым отрицательным наклоном (амплитуда уменьшается по мере увеличения частоты).Мы также замечаем определенную частоту f H , которая является частотой среза (я определяю ее как f H для «высокой частоты среза», а не f C , которую можно спутать с «центром». частота в других типах фильтров).

Обратите внимание, что частота среза не возникает сразу после начала фильтрации. Скорее, частота среза представляет собой точку -3 дБ затухания фильтра. Как мы вкратце обсуждали, это частота, на которой фильтр снижает мощность сигнала вдвое.Это определение частоты среза используется в фильтрах нижних и верхних частот, полосовых и других фильтрах.

LPF Полоса пропускания, полоса задерживания и переходная полоса

Обратите внимание, что технически фильтр нижних частот будет иметь полосу пропускания (диапазон пропускаемых частот), которая находится в диапазоне от 0 Гц до частоты среза.

Полоса задерживания будет в какой-то момент за полосой пропускания, когда затухание достигнет достаточной точки (например, -50 дБ). В идеальном фильтре полоса пропускания идет до частоты среза, а полоса задерживания — это все, что выше этой частоты среза.Однако в реальных условиях фильтры нижних частот работают немного иначе.

LPF обычно имеют переходную полосу между полосой пропускания и полосой задерживания, где фильтр будет эффективно уменьшать амплитуду сигнала. Ширина полосы перехода зависит от крутизны спада, которая определяется порядком и типом фильтра.

Фильтр нижних частот Порядок

Фильтры часто определяются их порядком. В простых фильтрах, таких как ФНЧ и ФВЧ, порядок фильтра в значительной степени относится к крутизне переходной полосы (также известной как скорость спада).

Технически порядок фильтра — это минимальное количество реактивных элементов, используемых в цепи. В аналоговых звуковых фильтрах нижних частот эти реактивные элементы почти всегда будут конденсаторами (хотя в определенных ситуациях могут использоваться катушки индуктивности). Мы обсудим это позже в разделе «Аналоговые против». Цифровые фильтры нижних частот.

Итак, порядок фильтра нижних частот по определению является целым числом (мы не можем иметь долю реактивного компонента в цепи), и он влияет на крутизну спада переходной полосы фильтра.

Для стандартных фильтров нижних частот Баттерворта каждое целое число увеличивает крутизну спада на дополнительные 6 дБ на октаву или 20 дБ на декаду.

Обратите внимание, что октава определяется как удвоение (или уменьшение вдвое) частоты, а декада определяется как десятикратное увеличение (или уменьшение) частоты.

Также обратите внимание, что стандартный фильтр Баттерворта поддерживает указанную выше взаимосвязь между порядком и скоростью спада. Другие типы фильтров предлагают другие отношения.Подробнее об этом позже.

А пока давайте рассмотрим следующий график, который показывает 5 различных фильтров нижних частот Баттерворта с порядками от 1 до 5:

Частота среза (точка -3 дБ) каждого фильтра составляет 1 кГц. Скорость спада и переходная полоса (которая может быть ограничена отметкой ослабления -50 дБ) изменяются в зависимости от порядка фильтра.

Мы видим, что по мере увеличения порядка фильтр нижних частот становится все ближе к идеальному фильтру.

Коэффициент добротности фильтра нижних частот

Некоторые фильтры нижних частот имеют регулировку добротности. Это особенно касается плагинов параметрического эквалайзера и блоков цифрового эквалайзера, где фильтр не разработан как какой-либо конкретный тип (Баттерворт, Бессель, Чебышев, Эллиптический и т. Д.).

Для получения дополнительной информации о параметрическом эквалайзере ознакомьтесь с моей статьей «Полное руководство по параметрической эквализации / эквалайзеру».

Коэффициент добротности несколько произвольный. Хотя у него есть свои определения, у многих производителей есть свои собственные технические расчеты для параметра Q.

Однако, в общем смысле, увеличение добротности ФНЧ приведет к увеличению крутизны спада, вызывая формирование резонансного пика на частоте среза и выше.

И наоборот, уменьшение добротности LPF увеличит затухание на частоте среза и выше, в то же время делая крутизну спада более плавной.

Эквалайзеры, которые предлагают регулировку Q-фактора на фильтре нижних частот, обычно имеют график, показывающий, как фильтр влияет на сигнал.

Фильтры нижних частот и фазовый сдвиг

Важно отметить, что в типичных аналоговых фильтрах, таких как стандартный фильтр Баттерворта, будет частотно-зависимый фазовый сдвиг между входным сигналом фильтра / эквалайзера и его выходным сигналом.

Вообще говоря, каждый реактивный компонент в аналоговом фильтре вносит в сигнал фазовый сдвиг на 90 °. Для аналоговых фильтров нижних частот (и цифровых фильтров, которые стремятся воссоздать их в цифровом виде) это означает, что при целочисленном увеличении порядка фильтрации будет происходить сдвиг фазы на 90 °.

В стандартных фильтрах нижних частот Баттерворта половина общего фазового сдвига приходится на частоту среза.

Вот визуальное представление фильтра нижних частот Баттерворта первого порядка с графиками амплитуды-частоты и фазы-частоты:


Аналог Vs. Цифровые фильтры нижних частот

Ключевое различие между аналоговыми и цифровыми фильтрами нижних частот состоит в том, что аналоговые фильтры работают с аналоговыми аудиосигналами, а цифровые фильтры работают с цифровыми аудиосигналами.

В схемах аналогового аудио LPF используются аналоговые компоненты, такие как резисторы и конденсаторы (в активных схемах LPF используются активные компоненты, такие как операционные усилители). С другой стороны, цифровые фильтры LPF либо встроены в микросхемы цифровых микросхем, либо в программное обеспечение.

Давайте обсудим каждую подробнее, не так ли?

Аналоговые фильтры нижних частот

Аналоговые фильтры проще объяснить, поскольку они сделаны из реальных аналоговых схем, которые относительно легко понять.Обратите внимание, что я не инженер-электрик, и цифровые схемы / программирование выходят за рамки моих знаний.

Итак, в этой статье я постараюсь объяснить, как работают аналоговые фильтры нижних частот. Обратите внимание, что многие цифровые фильтры нижних частот предназначены для воссоздания эффекта аналоговых ФНЧ.

В объяснении будет много уравнений, которые нужно пройти, чтобы помочь нам понять.

Чтобы действительно понять основы работы фильтра нижних частот, мы можем изучить простой пассивный RC LPF первого порядка.Этот фильтр можно визуализировать с помощью следующего изображения. Обратите внимание, что «RC» относится к резистору и конденсатору, используемым в схеме.

Цепь выше можно представить как делитель напряжения:

На схеме выше мы выводим следующую формулу:

Из этой формулы можно сделать вывод, что по мере увеличения R 2 , V из увеличивается (при условии, что R 1 остается постоянным). Запомни это.

В этом уравнении делителя напряжения постоянного тока R 1 представляет сопротивление резистора, который будет вместо резистора RC-цепи, а R 2 представляет сопротивление резистора, который будет вместо конденсатора RC-цепь.Имейте это в виду.

Допустим, аудиосигнал на V в имеет частотное содержание от 20 Гц до 20 000 Гц (диапазон слышимости человека). Это сигнал переменного тока, а не постоянного тока. Сигналы переменного тока зависят от импеданса, который имеет как фазу, так и величину и состоит из сопротивления и реактивного сопротивления цепи.

В идеальном мире (который мы будем использовать для понимания RC-фильтров нижних частот) реактивное сопротивление резистора равно нулю, а сопротивление конденсатора равно нулю.Резистор будет обеспечивать составляющую сопротивления для общего импеданса аудиосигнала, а конденсатор будет составлять составляющую реактивного сопротивления для общего импеданса аудиосигнала.

Итак, со следующей упрощенной схемой RC-фильтра нижних частот:

У нас получилось бы следующее уравнение:

Где:
• X C — емкостное сопротивление конденсатора
• Z — полное сопротивление цепи

Помните, что полное сопротивление складывается из компонентов сопротивления и реактивного сопротивления цепи.Типичная формула импеданса:

Где X L — индуктивная емкость. Поскольку в RC-цепи нет индуктора, X L равно нулю.

Давайте быстро перепишем наше выходное напряжение RC с новой информацией:

Знакомо? Это почти то же самое, что и простой делитель напряжения.

Итак, наш RC-фильтр нижних частот можно сравнить с делителем напряжения, но для аудиосигналов переменного тока. По мере того, как X C увеличивается, также увеличивается V из (опять же, при условии, что R остается постоянным).

Как он на самом деле работает как фильтр нижних частот? Что ж, реактивная емкость уменьшается с увеличением частоты входного сигнала. Формула для этого выглядит следующим образом:

Где:
f — частота сигнала
• C — емкость конденсатора

Итак, мы имеем следующие правила RC-цепи нижних частот:

  • По мере увеличения частоты емкостное реактивное сопротивление уменьшается.
  • По мере уменьшения емкостного реактивного сопротивления уровень выходного сигнала уменьшается относительно уровня входного сигнала (при условии, что сопротивление цепи остается неизменным).

В основном, как емкостное реактивное сопротивление. уменьшается (по мере увеличения частоты), большая часть сигнала отправляется на землю, а не на выход.

Следовательно, в общем случае RC-цепь нижних частот начнет ослаблять более высокие частоты, и по мере увеличения частоты схема будет ослаблять больше.

Мы уже обсуждали частоту среза. Это точка, в которой полоса пропускания превращается в полосу перехода (или полосу задерживания в идеальных фильтрах). Частота среза находится в точке затухания -3 дБ. Его можно рассчитать с помощью следующего уравнения:

Где:
• R — сопротивление резистора
• C — емкость конденсатора

В качестве дополнительного уравнения мы можем вычислить вышеупомянутый фазовый сдвиг RC-фильтра нижних частот с помощью следующего уравнения:

Надеюсь, в этом есть смысл.Здесь мы рассмотрим самую простую форму аналогового RC-фильтра нижних частот.

Аналоговые фильтры, как правило, просты по конструкции, хотя их сложность увеличивается по мере приближения к характеристикам «идеального фильтра». Многие цифровые фильтры (включая плагины EQ) эмулируют эти аналоговые фильтры.

Помните, что, добавляя дополнительные наборы RC (увеличивая порядок) фильтра нижних частот, мы можем эффективно увеличить крутизну спада и сократить полосу перехода.

Существует множество типов фильтров, о которых следует знать.До сих пор мы в основном сосредоточились на популярном фильтре Баттерворта. Однако есть 3 основных типа фильтров (среди многих), о которых мы должны знать, когда дело касается звука. Их:

  • Фильтр Баттерворта
  • Фильтр Бесселя
  • Фильтр Чебышева

Эти «типы» фильтров зависят от значений компонентов, используемых в конструкции фильтра, и коэффициента демпфирования, который входит в конструкцию фильтра. Изучение схем отдельных ФНЧ выходит за рамки данной статьи, но об этих популярных типах стоит знать.

Что такое фильтр Баттерворта в аудио? Фильтр Баттерворта (фильтр с максимально плоской амплитудой) — это линейный аналоговый фильтр, предназначенный для получения максимально плоской частотной характеристики в полосе пропускания. Фильтры Баттерворта не имеют слишком крутого спада и часто используются в полочных фильтрах низких / высоких частот и низких / высоких частот.

Чтобы узнать больше о полочных фильтрах, ознакомьтесь с моей статьей Audio Shelving EQ: Что такое фильтры для низких и высоких полок?

Что такое фильтр Бесселя в аудио? Фильтр Бесселя — это линейный аналоговый фильтр с максимально плоской групповой или фазовой характеристикой для сохранения формы волны сигналов в полосе пропускания.Фильтры Бесселя обеспечивают плавный спад частоты за пределами частоты среза и в основном предназначены для линейной фазовой характеристики с небольшим выбросом.

Что такое фильтр Чебышева в аудио? Фильтр Чебышева — это линейный аналоговый фильтр , разработанный для получения очень крутого спада за счет пульсаций полосы пропускания (тип I) или пульсаций полосы задерживания (тип II / инверсия).

Вот изображение из Википедии, показывающее типичные различия между фильтрами нижних частот Баттерворта, Чебышева I / II и эллиптическими фильтрами нижних частот:

Обратите внимание, что эллиптический фильтр (также известный как фильтр Кауэра) представляет собой линейный аналоговый фильтр с выровненной пульсацией как в полосе пропускания, так и в полосе задерживания.У него очень крутая переходная полоса. Это достигается за счет комбинирования фильтра нижних частот и полосового / режекторного фильтра.

Цифровые фильтры нижних частот

Цифровые фильтры часто бывают более точными и более гибкими по конструкции из-за обширной природы цифровой обработки сигналов (DSP). Точность их конструкции делает их гораздо более точными по заданным параметрам, тогда как аналоговые фильтры несколько ограничены точностью их компонентов и тракта прохождения сигнала в целом.

Цифровые фильтры

также обладают такими преимуществами, как улучшенное соотношение цены и качества и более постоянный характер изменений температуры и влажности.

Аналоговые фильтры, конечно, выигрывают от работы с непрерывным спектром.

Обратите внимание, что некоторые цифровые фильтры нижних частот предназначены для имитации работы аналоговых ФНЧ. Мы часто находим упомянутые ранее типы фильтров (Баттерворта, Бесселя, Чебышева и т. Д.) В цифровых дизайнах.

Вместо использования аналоговых компонентов (конденсаторы, резисторы, операционные усилители и т. Д.)) цифровые схемы будут встроены в цифровые микросхемы (с сумматорами, вычитателями, задержками и т. д.) или, в качестве альтернативы, могут быть запрограммированы в аудиоплагины.

Цифровой фильтр нижних частот впишется в один из двух лагерей:

  • Бесконечная импульсная характеристика (БИХ)
  • Бесконечная импульсная характеристика (КИХ)

Что такое фильтр с бесконечной импульсной характеристикой в ​​аудио? БИХ-фильтр — это линейный, не зависящий от времени аналоговый тип фильтра (который также был оцифрован), который работает с импульсной характеристикой, которая продолжается бесконечно, никогда не становясь точно равной нулю.Фильтры Баттерворта, Чебышева, Бесселя и эллиптические фильтры являются примерами БИХ-фильтров.

Что такое фильтр с конечной импульсной характеристикой в ​​аудио? КИХ-фильтр — это фильтр (аналоговый или цифровой, хотя почти всегда цифровой), который работает с импульсной характеристикой конечной длительности, устанавливающейся на ноль в течение некоторого времени. Он хорошо подходит для линейно-фазового эквалайзера.

Говоря о линейно-фазовом эквалайзере, стоит упомянуть и об этих специализированных эквалайзерах.

Линейный фазовый эквалайзер (который почти всегда будет иметь опции фильтра нижних частот) эффективно устраняет любой фазовый сдвиг в аудиопроцессоре.

Вспомните в разделе «Фильтры нижних частот и фазовый сдвиг», как мы обсуждали неизбежный фазовый сдвиг аналоговых ФНЧ (фазовый сдвиг на 90º для каждого реактивного компонента в цепи).

Линейный фазовый эквалайзер (и фильтр нижних частот) использует цифровую обработку сигнала (DSP) для анализа частотного содержания сигнала и применения усиления к соответствующим частотам через фильтры FIR (конечный импульсный отклик), чтобы исключить любой сдвиг фазы. что возникает.

Liny EQ от Blue Cat (ссылка, чтобы узнать цену в магазине плагинов) — отличный пример плагина линейного фазового эквалайзера:

Линия эквалайзера синего кота

Для получения дополнительной информации о линейно-фазовом эквалайзере ознакомьтесь с моей статьей «Полное руководство по линейной фазовой эквализации / эквалайзеру».

Обзор аналоговых и цифровых фильтров нижних частот

Вот небольшая таблица, обобщающая то, что мы обсуждали в этом разделе.

Аналоговый аудио LPF Цифровой аудио LPF
Фильтрует аналоговые (непрерывные) аудиосигналы Фильтрует цифровые (дискретные) аудиосигналы
Изготовлен из аналоговых компонентов Встроен в цифровые микросхемы (с сумматорами, вычитателями, задержками и т. Д.), или же;
Закодировано в ПО
Ограниченные функциональные возможности и адаптируемость Более универсальные возможности программирования
Более чувствительны к изменениям окружающей среды Менее чувствительны к изменениям окружающей среды
Аналоговые компоненты создают тепловой шум Квантование приводит к появлению цифрового шума
Более высокие производственные затраты Более низкие производственные затраты

Актив.Пассивные фильтры нижних частот

Ключевое различие между активными и пассивными фильтрами нижних частот состоит в том, что активные фильтры нижних частот требуют мощности для работы, а пассивные фильтры низких частот — нет.

Это связано с тем, что в цепи активных ФНЧ будет какой-то усилитель. Эти усилители (часто операционные усилители) получают питание от источника и используют его для усиления сигнала, проходящего через фильтр нижних частот или звуковой эквалайзер.

Обратите внимание, что метки «активный» и «пассивный» обычно применяются только к аналоговым фильтрам.Цифровые фильтры по своей конструкции активны (это относится к оборудованию, которое построено на транзисторах и программном обеспечении, требующем вычислений).

С помощью этого праймера давайте обсудим активный и пассивный фильтры нижних частот более подробно, начав с более простого: пассивного ФНЧ.

Пассивные фильтры нижних частот

В моем объяснении аналоговых фильтров нижних частот я сосредоточился исключительно на схеме пассивного RC-фильтра нижних частот. Итак, у нас уже есть четкое представление о пассивных фильтрах нижних частот.

Еще раз, самый простой пассивный фильтр нижних частот первого порядка выглядит примерно так:

Обратите внимание, что мы можем увеличить скорость спада пассивного фильтра, добавив полюса. Однако это происходит за счет потери амплитуды сигнала (поскольку в схеме нет каскадов усиления) и ухудшается передача сигнала внутри схемы из-за плохого импедансного моста (поскольку нет буфера между полюсами или на выходе ФНЧ).

Пассивные фильтры нижних частот просты для понимания.К счастью, поскольку им поручено только срезать частоты (выше частоты среза), они не обязательно нуждаются в активном усилении.

Однако, как уже упоминалось, пассивный фильтр низких частот может работать плохо, поскольку он естественным образом снижает амплитуду проходящего через него сигнала (даже на нижних частотах). Также труднее найти надлежащий мостовой импеданс между выходом пассивного LPF и следующим аудиоустройством (нагрузкой).

Пассивные фильтры нижних частот все еще используются в определенных приложениях, и на рынке есть даже блоки пассивного эквалайзера, которые по определению будут иметь пассивные фильтры нижних частот (если они включают фильтр нижних частот).

Обратите внимание, что в пассивных эквалайзерах есть каскад усиления для «компенсационного усиления» после схемы (схем) фильтра. Просто в схеме (ах) фильтра нет активных компонентов.

Для получения дополнительной информации об усилении макияжа и пассивном эквалайзере, ознакомьтесь со следующими статьями «Мой новый микрофон», соответственно:
• Сжатие динамического диапазона: что такое регулировка усиления макияжа?
• Полное руководство по пассивной эквализации / EQ

Активные фильтры нижних частот

Чаще всего используется активный фильтр нижних частот.

В активных аналоговых фильтрах нижних частот обычно используются операционные усилители. Эти операционные усилители полезны для фильтров с единичным усилением (фильтров, которые поддерживают амплитуду сигнала, но не увеличивают амплитуду сигнала) и фильтров, которые действительно обеспечивают правильный каскад усиления.

Это усиление позволяет разработчикам LPF увеличивать порядок фильтра, тем самым увеличивая крутизну спада, не беспокоясь о потере общей амплитуды сигнала.

Еще одним огромным преимуществом активной конструкции LPF является улучшение выходного сопротивления фильтра.Включив операционный усилитель, мы можем установить низкий выходной импеданс на всех частотах для улучшения передачи сигнала между LPF и следующим аудиоустройством.

Вот пример активного RC-фильтра нижних частот первого порядка с единичным усилением:

Обратите внимание, что он очень похож на вышеупомянутый пассивный RC-фильтр. Основное отличие, конечно же, в операционном усилителе. В этом случае операционный усилитель не усиливает сигнал. Скорее, он поддерживает единичное усиление и обеспечивает соответствующий выходной импеданс для цепи фильтра нижних частот.

Теперь давайте посмотрим на простой RC-фильтр нижних частот первого порядка, который предлагает усиление:

Коэффициент усиления A В неинвертирующего усилителя рассчитывается по следующему уравнению, включая резистор обратной связи (R 2 ) и соответствующий ему входной резистор (R 1 ):

Коэффициент усиления всей схемы зависит от частоты (поскольку фильтр нижних частот ослабляет более высокие частоты). Это усиление можно определить с помощью следующего уравнения:

С помощью этого уравнения мы можем наблюдать следующее:

  • На низких частотах ( f < f C ): A = V out / V in = A V / {small number} ≈ A V
  • At частота среза ( f = f C ): A = V out / V in = A V / √2 = 0.707 A V
  • На высоких частотах ( f > f C ): A = V out / V in = A V / {большое количество} «A V

Если подставить 0,707 A V в следующее уравнение для децибел, мы можем подтвердить, что частота среза действительно составляет -3 дБ от единицы:

Если мы посмотрим на фильтр второго порядка (на упрощенной схеме), мы получим следующее:

Имея дело с фильтрами второго порядка (и выше), мы имеем коэффициент демпфирования в цепи.Коэффициент демпфирования этой простой топологии фильтра Саллена-Ки составляет:

Значения R F и R I участвуют в определении коэффициента усиления и демпфирования схемы. R F и R I также определяют, какой у нас фильтр Баттерворта, Бесселя или Чебышева. Обратите внимание, что следующее применимо только к фильтру второго порядка:

  • Баттерворта:
    • R F / R I = 0,586
    • DF = 1.414
    • A V = 4 дБ
  • Bessel:
    • R F / R I <0,586
    • DF> 1,414
    • A V <4 дБ
  • Чебышев:
    • R F / R I > 0,586
    • DF <1,414
    • A V > 4 дБ

Давайте теперь посмотрим на RC-фильтр нижних частот шестого порядка. ниже:

Возможно, первое, что следует отметить, это то, что на каждые две пары резистор-конденсатор (для каждого увеличения на два в порядке фильтра) в схеме будет операционный усилитель.Это стандарт для поддержания надлежащего каскадирования усиления и буферизации по всей цепи.

Возвращаясь к крутизне спада, этот фильтр нижних частот будет иметь крутизну на 36 дБ / октаву или 120 дБ / декаду выше частоты среза. Этот фильтр может принимать фильтры Баттерворта, Бесселя, Чебышева или любой другой возможный «тип» фильтра нижних частот с учетом топологии. Различные отношения R F / R I между 3 наборами будут отличаться от тех, которые определены выше для фильтра второго порядка.

Надеюсь, я вас не запутал. Есть много других подробных ресурсов по фильтрам. Основное внимание в этой статье уделяется разработке и использованию фильтров нижних частот в аудио, поэтому я воздержусь от того, чтобы заходить слишком далеко в кроличью нору!

Обзор активных и пассивных фильтров нижних частот

Вот небольшая таблица, обобщающая то, что мы обсуждали в этом разделе.

Active Audio LPF Passive Audio LPF
Требуется питание Не требуется питание
Включает активные и пассивные компоненты (включая операционные усилители) Включает только пассивные компоненты (резисторы, конденсаторы и т. Д.))
Предлагает усиление выше единичного усиления (повышает в дополнение к отсекам) Не может предлагать усиление выше единичного усиления (только отсечки)
Низкое выходное сопротивление (работа независимо от нагрузки) Более высокое выходное сопротивление (работа в зависимости от нагрузки)
Более высокие производственные затраты Более низкие производственные затраты

Можно отметить дополнительные моменты, которые неприменимы к звуковым LPF (как и к очень высокочастотным сигналам), но в любом случае их стоит упомянуть:

  • Пассивные фильтры LPF могут содержать индукторы.
  • Активные ФНЧ не могут обрабатывать такие высокие амплитуды сигнала, как пассивные фильтры, из-за операционного усилителя.
  • Активные ФНЧ имеют ограниченную полосу пропускания из-за операционного усилителя.

Смешивание с фильтрами низких частот

Теперь, когда мы понимаем, что такое фильтр нижних частот и как он работает, давайте рассмотрим его практическое применение, когда дело доходит до микширования звука.

Фильтры нижних частот используются для микширования следующим образом:

Снижение конкуренции между инструментами высокого класса

Одна из наиболее важных задач звукового эквалайзера — очистка частотного спектра, чтобы инструменты были слышны.Это означает уменьшение частотных диапазонов некоторых треков, чтобы другие треки могли просвечивать в этих же диапазонах.

Фильтры нижних частот могут эффективно устранять высокие частоты некоторых выбранных дорожек, тем самым позволяя другой дорожке (дорожкам) занять высокие частоты с улучшенной четкостью. Это также может снизить резкость всего микса.

В high-end не так много «музыкальной» информации (гармоник). Однако, исключив «яркость» некоторых инструментов, мы можем усилить воспринимаемую яркость / воздушность других инструментов.Также ничто не мешает нам снизить частоту среза ФНЧ до среднего диапазона, чтобы начать фильтрацию гармонического содержимого.

Уменьшить шипение

Если исходный материал записан неправильно или с использованием некачественного оборудования, шипение (среди прочего) может быть нежелательным слышимым результатом.

Некоторое шипение неизбежно в аналоговом оборудовании, включая микрофоны, из-за природы электричества и электрических компонентов, которые используются в конструкции звукового оборудования.Обычно это называют «собственным шумом».

Статьи по теме:
• Что такое самошум микрофона? (Эквивалентный уровень шума)
• Какое хорошее соотношение сигнал / шум для микрофона?
• 15 способов эффективного снижения шума микрофона

Большая часть того, что мы называем «шипением», находится в верхней части частотного спектра. Следовательно, использование фильтра нижних частот может помочь уменьшить уровень шипения в сигнале. Просто убедитесь, что вы помните о любых эффектах, которые LPF будет иметь на тон, когда вы понижаете частоту среза.

Существуют также звуковые плагины, которые могут помочь уменьшить шум, не влияя на частотную составляющую сигнала. Waves X-Noise (ссылка, чтобы проверить это на Waves) — отличный пример такого плагина.

Волны X-Noise

Waves Audio входит в список лучших мировых брендов аудиоподключаемых модулей My New Microphone (VST / AU / AAX).

Добавить глубину

Глубина — важный параметр при смешивании. По сути, это воспринимаемое расстояние до источника звука в контексте микса.

В реальном мире акустики увеличение расстояния между источником звука и слушателем может привести к нескольким событиям. Я добавлю в скобки звуковые эффекты, которые помогают имитировать эту психоакустическую воспринимаемую глубину:

  • Звук будет тише (громкость / усиление).
  • Звук дойдет до ушей слушателя позже (задержка).
  • Звук, скорее всего, будет отражаться от других поверхностей в акустическом пространстве и достигать ушей слушателя через разное время (задержка и реверберация).
  • Звук будет менее сфокусированным (модуляция, например, хорус).
  • Звук будет менее высокочастотным, поскольку более высокочастотные звуковые волны сначала теряют энергию из-за трения среды / воздуха (LPF).

Статья по теме: Полный список: аудиоэффекты и процессы для сведения / производства.

Таким образом, уменьшая высокие частоты источника с помощью фильтра нижних частот (или полки верхних частот или другого эквалайзера), мы можем создать иллюзию того, что источник находится еще дальше в миксе.

Добавить край с резонансом

Как мы обсуждали ранее, полоса пропускания фильтра нижних частот (особенно около частоты среза) не всегда идеально ровная. Во многих случаях будет какой-то резонансный пик или усиление эквалайзера около / ниже частоты среза.

Таким образом, мы можем использовать некоторые фильтры нижних частот для усиления определенных резонансных полос, чтобы придать дорожке некоторый край непосредственно перед точкой, в которой отфильтровываются высокие частоты.

Чтобы получить максимальную «грань» от источника звука, обычно лучше всего иметь резонанс и отсечку в среднем диапазоне, где в сигнале присутствует заметная гармоническая составляющая.

Автоматизировать!

Автоматизация фильтра нижних частот может быть использована с большим эффектом для создания акустического интереса к источнику звука.

Если вам нравятся синтезаторы, вы, вероятно, знаете, как автоматизация или иная модуляция фильтра нижних частот может дать отличные результаты.

Педали эффектов

Wah-wah и с фильтром огибающей также могут модулировать фильтр нижних частот для достижения своего звукового эффекта, особенно когда есть пик резонанса около среза.

Статьи по теме:
• Что такое педали эффектов для гитары Wah-Wah и как они работают?
• Что такое педали эффектов фильтров огибающих и как они работают?

Когда дело доходит до автономных фильтров нижних частот, мы можем распространить эти эффекты на любой источник звука, автоматизируя фильтр нижних частот (особенно параметр частоты среза).

Мы также можем использовать автоматизацию, чтобы эффективно увеличивать или уменьшать воспринимаемую глубину трека, а также снижать конкуренцию в high-end, когда другие треки вводятся в аранжировку (или удаляются из нее).


Другое применение фильтров нижних частот в аудио

Помимо микширования, фильтры нижних частот используются во многих других звуковых стандартах и ​​оборудовании.

Фильтры нижних частот используются в звуке общего назначения следующим образом:

Фильтры сглаживания и восстановления

Если вы какое-то время интересовались звуком, вы знаете, что аудиосигналы могут быть аналоговыми или цифровыми.В то время как аналоговые сигналы обычно используются с преобразователями (громкоговорители, наушники, микрофоны и т. Д.) И некоторыми способами хранения (винил, лента и т. Д.), В современных случаях обычно используется цифровое аудио хранилище (внутри DAW, потоковая передача, облачное хранилище и т. Д.) хранилище на жестком диске и т. д.).

Независимо от того, записываем ли мы с микрофонов или аналоговых инструментов на цифровую звуковую рабочую станцию ​​или воспроизводим цифровой звук через динамики или наушники, нам потребуется преобразование аналогового и цифрового звука.

Это преобразование выполняется с помощью точно названных аналого-цифровых преобразователей (АЦП) и цифро-аналоговых преобразователей (ЦАП).

При переходе от аналогового к цифровому, АЦП будет производить выборку звука с высокой частотой дискретизации и назначать амплитуду (в пределах установленной битовой глубины) каждой выборке, пытаясь смоделировать форму волны аналогового сигнала.

При переходе от цифрового сигнала к аналоговому ЦАП будет пытаться создать плавный непрерывный сигнал на основе отсчетов цифрового сигнала.

В обоих преобразователях используются аналоговые фильтры нижних частот.

Фильтр сглаживания

В АЦП ФНЧ называется фильтром сглаживания. Фильтр сглаживания, как следует из названия, фильтрует аналоговый сигнал до того, как происходит выборка / преобразование, чтобы избежать наложения спектров.

Наложение — это ошибка выборки, которая возникает, когда частота дискретизации слишком мала для правильного определения частоты входного сигнала. Когда происходит наложение спектров, дискретизированный сигнал в конечном итоге имеет более низкую частоту, чем входной сигнал.

Обратите внимание, что типичные аудиосигналы не являются простыми синусоидальными волнами и имеют широкий диапазон частот. Таким образом, псевдонимы вносят искажения и другие артефакты в цифровой аудиосигнал (а не просто изменяют частоту сигнала).

При этом проще всего визуализировать сглаживание с помощью простой синусоидальной волны. Давайте посмотрим на несколько иллюстраций, которые помогут нам понять псевдоним:

На следующем изображении у нас есть синусоидальная волна 12 кГц, дискретизируемая с частотой 48 кГц.Точки представляют каждую точку выборки, а красный сигнал представляет собой выбранный сигнал (обратите внимание, что он наложен поверх исходного сигнала черным цветом). Другими словами, АЦП эффективно преобразует сигнал из аналогового в цифровой.

На этом следующем изображении у нас есть входной сигнал 36 кГц, дискретизированный с той же частотой 48 кГц. Точки представляют каждую точку выборки, а красный сигнал представляет собой выбранную форму волны. Обратите внимание, что для создания сигнала, который проходит через каждую точку выборки (без прохождения сначала цикла), выбранная форма волны должна принимать другую форму волны, на этот раз с частотой 6 кГц.По сути, это то, что такое алиасинг.

Обычно цифровой звук дискретизируется с частотой 44,1 кГц или 48 кГц, хотя также распространены более высокие частоты 88,2, 96, 176,4 и 192 кГц.

Теорема выборки Найквиста-Шеннона по существу гласит, что во избежание наложения спектров цифровая система дискретизации должна иметь частоту дискретизации, по крайней мере, в два раза выше, чем наивысшая частота дискретизации звука.

Звуковой диапазон человеческого слуха составляет от 20 Гц до 20 кГц, поэтому мы можем эффективно снизить низкие частоты выше 20 кГц, не оказывая чрезмерного влияния на то, что мы слышим.Обратите внимание, что в случае появления наложения спектров частоты выше диапазона слышимости вызовут искажения и артефакты в диапазоне слышимости.

Таким образом, при самой низкой общей частоте дискретизации 44,1 кГц нам нужно, чтобы самая высокая частота аудиосигнала составляла 22,05 кГц или 22050 Гц. Это дает нам немного места в частотном спектре для спада частот между (в идеале) 20 кГц и 22,05 кГц.

Помните, что фильтры нижних частот должны учитывать некоторый переходный период.Спад на 40 дБ обычно считается достаточным, чтобы сделать наложение «несущественным». По этой метрике нам понадобится фильтр очень высокого порядка, приближенный к кирпичному / идеальному фильтру.

Реконструкция фильтра

В ЦАП ФНЧ упоминается как реконструкция фильтра, препятствующего формированию изображения.

Когда цифровой сигнал преобразуется в аналоговый, это не непрерывный сигнал. Скорее, он имеет дискретные изменения напряжения при заданной частоте дискретизации. Путем низкого прохождения преобразованного сигнала мы можем эффективно сгладить этот дискретный сигнал на высоких частотах, чтобы получить типичный аналоговый сигнал с непрерывным временем.

Удалив высокочастотные составляющие сигнала, мы можем избавиться от любых искажений или образов в сигнале.

Обратите внимание, что в идеале эти фильтры нижних частот должны быть идеальными, то есть они должны быть каменными фильтрами. Обычно это достигается (приблизительно) с помощью ФНЧ с импульсной характеристикой sinc.

Фильтры деактивации

Фильтры уменьшения выделения используются в системах, где предварительное выделение и ослабление выделения необходимо для улучшенной передачи сигнала.Это, прежде всего, FM-радио и запись / воспроизведение виниловых пластинок.

Фильтры предыскажения, как правило, представляют собой фильтры верхних частот, обрезные фильтры нижних частот или повышающие фильтры верхних частот. Они используются для улучшения отношения сигнал / шум на высоких частотах (с FM-радио) или для улучшения хранения (как известно, винил плохо хранит низкочастотную информацию в своих канавках).

Затем при воспроизведении требуется фильтр уменьшения выделения, чтобы отменить действие фильтра предварительного выделения, возвращая сигнал к его исходной частотной характеристике.

Поскольку фильтры предыскажения относятся к разновидности высокочастотных (или аналогичных), фильтры ослабления предыскажения относятся к разновидности низкочастотных (или аналогичных).

Для наглядности вот изображение фильтра уменьшения выделения (синим цветом) и фильтра предварительного выделения (розового цвета) для FM-радио (постоянная времени 75 мкс и частота среза 2122 Гц):

Аналогичным образом, стандарт эквализации RIAA — это эквалайзер с предварительным / пониженным акцентом для записи и воспроизведения фонографических / виниловых пластинок. Он представлен на изображении ниже с синей линией, представляющей эквалайзер воспроизведения (сглаживание), и розовой линией, представляющей запись (с предварительным выделением) EQ:

Сабвуфер Кроссоверы

Сабвуферы — это громкоговорители, специально разработанные для воспроизведения низкочастотных звуковых волн (обычно от 20 Гц до 200 Гц) аудиосигнала.

Эти громкоговорители важны в системах, предназначенных для воспроизведения всего диапазона слышимых частот, поскольку большинство громкоговорителей не могут точно воспроизводить эту низкочастотную информацию (если вообще).

Более того, что позволяет нам слышать низкие частоты, сабвуферы позволяют нам почувствовать низкие частоты звука.

В системах с сабвуферами эти специализированные динамики обычно передают определенную полосу частот общего аудиосигнала.

Кроссовер громкоговорителей (независимо от того, является ли он автономным устройством или частью усилителя мощности) эффективно снижает низкочастотный сигнал, который будет отправлен на сабвуфер, чтобы не передавать информацию среднего / высокого уровня.Отправка сигналов с частотами за пределами выделенного диапазона сабвуфера может привести к неидеальным и «грязным» характеристикам сабвуфера.

Сабвуферы потребительского уровня, подобные тем, что используются в автомобилях, обычно воспроизводят 20 Гц — 200 Гц, в то время как профессиональные сабвуферы с усилением живого звука предназначены для воспроизведения звука ниже 100 Гц. Системы, одобренные THX, предназначены для работы с частотой ниже 80 Гц.

Для получения дополнительной информации о кроссоверах для динамиков ознакомьтесь с моей статьей Что такое кроссовер для динамиков? (Активный пассивный).

Включение в полосовые фильтры

Что такое полосовой фильтр в аудио? Полосовой фильтр «пропускает» полосу частот (определенный диапазон выше нижней среза и ниже высокой среза), постепенно ослабляя частоты ниже нижней среза и выше высокой среза.

Полосовые фильтры можно рассматривать как последовательные / каскадные фильтры верхних и нижних частот. Частота среза фильтра высоких частот ( f H ) будет ниже, чем частота среза фильтра низких частот ( f L ).

Вот визуальное представление графика частоты полосового фильтра:

А вот упрощенная схема, представляющая аналоговый полосовой фильтр с фильтром нижних частот первого порядка и фильтром нижних частот первого порядка:

Для получения дополнительной информации о полосовых фильтрах ознакомьтесь с моей статьей Audio EQ: Что такое полосовой фильтр и как работают BPF?

Включение в ленточные фильтры

Что такое полосовой фильтр в аудио? Полосовой фильтр (он же режекторный фильтр или режекторный фильтр) работает, удаляя частоты в указанной полосе в пределах общего частотного спектра.Это позволяет частотам ниже нижней точки отсечки проходить вместе с частотами выше верхней точки отсечки.

Полосовые фильтры можно рассматривать как параллельные фильтры верхних и нижних частот. Частота среза фильтра высоких частот ( f H ) будет больше, чем частота среза фильтра низких частот ( f L ).

Вот визуальное представление графика частоты полосового фильтра:

А вот упрощенная схема, представляющая аналоговый полосовой фильтр с фильтром нижних частот первого порядка и фильтром нижних частот первого порядка:

Чтобы узнать больше о полосовых фильтрах, ознакомьтесь с моей статьей Audio EQ: Что такое полосовой фильтр и как работают BSF?


Что такое фильтр высоких частот в звуковом эквалайзере? Фильтр высоких частот (HPF) — это процессор аудиосигнала, который удаляет нежелательные частоты из сигнала ниже определенной частоты среза.Он постепенно отфильтровывает (ослабляет) нижние частоты ниже его частоты среза, позволяя проходить верхним, в идеале без каких-либо изменений.

Статья по теме: Audio EQ: Что такое фильтр высоких частот и как работают фильтры HPF?

Что такое полочный эквалайзер? Shelving Eq использует полочные фильтры высоких и / или низких частот для воздействия на все частоты выше или ниже определенной частоты среза соответственно. Шельфинг может использоваться либо для усиления / усиления, либо для уменьшения / ослабления и воздействует на все частоты одинаково за пределами определенной точки.

Фильтр низких частот — Сабвуфер

Акустический спектр расширен за счет очень низких частот 20Iz и достигает 20000Iz на высоких частотах. На низких частотах ухудшается чувство направления. По этой причине мы используем динамик для присвоения очень низких частот. Производство, которое мы вам предлагаем, различает эти частоты, для того, чтобы к нему мы привели к соответствующему усилителю. Акустические фильтры встречаются в различных точках звуковой системы.Самыми известными приложениями являются фильтры baxandal для регулирования низких и высоких частот тона и фильтры кроссовера, где акустическая область разделена на подобласти, чтобы она опережала соответствующие громкоговорители. Приложение, которое мы вам предлагаем, представляет собой простой фильтр области, который ограничивает акустическую область (20-20000 Гц) в области 20-100 Гц.

С производителем, который мы предлагаем, вы можете сделать активный фильтр, чтобы вы управляли громкоговорителем очень низких частот.Таким образом, вы разместите один динамик большего размера между динамиками HIFI в вас. Для того, чтобы вы имели полное представление о звуке, вам также понадобится соответствующий усилитель. На входе схемы вы подключите два выхода предусилителя или выход линии какого-либо предусилителя. В производственной схеме предусмотрен выход для подключения силовой цепи сабвуфера. Если по какой-то причине у вас нет места для размещения третьего динамика в зоне слышимости, вы можете выбрать динамик меньшего размера.Результат будет зависеть от типа музыки, которую вы слышите. Если на самом деле у вас есть место, то после того, как вы сделаете фильтр и останетесь благодарными, вы можете порекомендовать его своим друзьям или все же сделать то же самое для своих друзей.

Принципиальная схема

В форме появляется теоретическая схема фильтра. На первый взгляд мы видим три разные схемы, которые в основном изготавливаются на двух операционных усилителях. Эти схемы представляют собой смешанный усилитель с регулируемым усилителем и регулируемый фильтр.Для производственного конца необходим контур общепита с рабочей тенденцией кейтеринга ± 12. операционные усилители, составляющие активные элементы для этих схем, имеют двойной рабочий тип, как TL082 и NE5532. Эти операционные усилители принадлежат к семейству, снабженному транзисторами эффекта полевого IFET в своих входах. Каждый член семейства выделяет в свою схему биполярный транзистор и эффект поля. Эти схемы могут работать в его высокой тенденции, потому что они используют транзисторы высокой тенденции.Также они имеют высокий ритм подъема (скорость нарастания), низкий ток поляризации для входов и мало зависят от температуры. В рабочем состоянии эти усилители имеют ширину полосы пропускания с единичным усилением 3 МГц. Другим важным элементом для их выбора является большой отказ от шума, когда он присутствует в линии общественного питания.

Цена брака больше 80 дБ, потребление небольшое, от 11 до 3 мА. Они продаются внутри в двух словах с восемью контактами и двумя операционными усилителями. В той же линейке в двух словах 14 контактов они включают четыре рабочих, В торговле они продаются с кодами TL074, TL084 и TL064, В двух словах они продаются с восемью контактами. операционные усилители TL061 TL071 kajTL081.При изготовлении мы использовали TL082, имеющий два рабочих. Сначала работает от TL082, он работает как усилитель и смешивается для двух каналов. В его отрицательной записи он существует один маленький, смешанный с двумя сопротивлениями. Потенциометр на этой ступеньке определяет вспомогательную схему. В точке этого левого крыла и правого канала предусилителя добавлены средства двух сопротивлений. В непрерывном режиме операционный усиливает сигнал с помощью, зависящей от цены потенциометра.

Место бегунка пропорционально с помощью схемы. Второй операционный усилитель является заводским фильтром. Фильтр акустической частоты второго класса выполнен из материалов, окружающих операционный усилитель. Фильтр низкопроходный с переменной частотой отсечки. Эта частота может быть изменена и брать цены с очень низкой частоты 30 Гц или все еще выше 150 Гц. Частота отключения фильтра зависит от цены на элементы схемы.Изменяя значения элементов, мы можем получить частоту отсечки 150Iz, 130Iz, J00Iz, 7Ïz, 6Íz даже 3Íz, по этой цене они могут быть достигнуты простым вращением двойного потенциометра. Схема фильтра была сделана вокруг одного операционного усилителя, который завершил TL082, то есть двойного операционного усилителя. На выходе фильтра подключим штекер расхода, куда подключается усилитель. На выходе из схемы представлен ограниченный по ширине частот сигнал, который мы подаем на вход схемы.

Производство

Детали
R1 = 39 кОм
R2 = 39 кОм
R3 = 47 кОм
R4 = 10 Ом
R5 = 22 кОм
R6 = 4,7 кОм
R7 = 22 кОм
R8 = 4,7 кОм
R9 = 10 Ом
R10 = 220 Ом
C1 = 39 пФ
C2 = 0,1 мкФ
C3 = 0,1 мкФ
C4 = 0,2 мкФ
C5 = 0,4 мкФ
C6 = 0,1 мкФ
C7 = 0,1 мкФ
IC1 = TL064

Для изготовления вам потребуется распечатка, которая появляется в форме.Здесь вы разместите материалы в следующей форме. Материалов достаточно, также легко могут возникнуть определенные ошибки. Однако с небольшим вниманием вы можете его избежать. Если они представляются разностными неисправностями, вы внимательно проверяете схему. Схема, как мы уже сказали, представляет собой фильтр, и они должны использоваться материально хорошей точности и качества, особенно для конденсаторов. Конденсаторы фильтров будут иметь допуск 5%. Конечно, производство также будет работать с материалом более низкого качества, испытание производства может быть выполнено с помощью акустического сигнала генератора. Мы применяем генератор на входе производства и измеряем с помощью вольтметра тенденцию на выходе из фильтра.Если мы изменим потенциометр и изменим тенденцию, то все будет хорошо.

автор: Soulis Papanastasiou
электронная почта: [email protected]
веб-сайт: http://www.techline.gr/

Активный низкочастотный фильтр сабвуфера

Рис. 1: Плата активного фильтра нижних частот сабвуфера.

В этой статье представлен простой активный фильтр нижних частот второго порядка с регулируемой частотой среза от 20 до 200 Гц. Схема, в которой используется один источник питания, работает с аудиосигналом малой мощности (то есть с линейными уровнями звука) и предназначена в качестве фильтрующего элемента перед усилителем мощности звука, управляющим громкоговорителем сабвуфера.Дизайн основан на традиционной топологии Саллена-Ки, которая предлагает простые вычисления и реализацию, хотя коэффициент качества невысок. Более простой альтернативой этой схеме является пассивный фильтр нижних частот сабвуфера.

1 — Характеристики цепи

Рисунок 2: Принципиальная электрическая схема

Поведение фильтра было проверено как с помощью моделирования LTSpice, так и с помощью необработанных измерений с помощью звуковой карты ПК и программного обеспечения Visual Analyzer.На следующих изображениях модули передаточных функций представлены в случае установки потенциометра на самую низкую частоту среза (Рисунок 3) и максимальную частоту среза (Рисунок 4). Можно отметить, что две кривые в основном равны, за исключением высоких частот, где низкая чувствительность звуковой карты и шум не позволяют провести точное измерение. Наклон всегда составляет -40 дБ за декаду из-за фильтра второго порядка. Рисунок 3: Модуль передаточной функции схемы в дБ в случае частоты среза 20 Гц, полученный путем измерения в реальной цепи с помощью звуковой карты ПК и программного обеспечения Visual Analyzer.Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера. По оси абсцисс использована логарифмическая шкала. Если частота среза составляет 20 Гц, резонансный пик отсутствует; напротив, этот пик появляется при f c = 200 Гц. Это согласуется с процессом проектирования, описанным в разделе 2, поскольку неравенство, допускающее отсутствие пика, было оценено для R P = R до , то есть для f c = 20 Гц.Пик резонанса в любом случае приемлем. Рисунок 4: Модуль передаточной функции схемы в дБ в случае частоты среза 200 Гц, полученный путем измерения в реальной цепи с помощью звуковой карты ПК и программного обеспечения Visual Analyzer. Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера. По оси абсцисс использована логарифмическая шкала.

Отрицательной стороной фильтра является плохо сбалансированный потенциометр: линейное изменение его сопротивления не соответствует линейному изменению частоты среза.Ниже представлена ​​зависимость частоты среза от сопротивления потенциометра. Рис. 5: Изменение частоты как функция потенциометра.

2 — Строительные заметки

Реализация схемы несложная, так как использовались очень распространенные компоненты, ее размер и сложность невелики. Плата, показанная на рисунке 1, имеет размеры 4 см x 5 см и, следовательно, является частью европейского стандарта Eurocard, который имеет размер 160 мм x 100 мм.Разъемов три: один для аудиовхода, один для аудиовыхода и один для источника питания.

Рис. 6: Шелкография и печатная плата фильтра.

3 — Модификация стереовхода

Схема изначально была спроектирована так, чтобы иметь моновход. Самые низкие частоты, обозначенные значком, обычно одинаковы для правого и левого стереоканалов, поскольку наши уши не могут различить их пространственное происхождение. По той же причине обычно используются два динамика, один для правой стороны, а другой для левой стороны, для средних и высоких частот, но только один сабвуфер в центре.По просьбам в комментариях предлагается два решения:

  • Подключите ко входу фильтра только левый канал (L канал), так как басовые сигналы одинаковы на обоих каналах;
  • Измените схему, как показано на рис. 7;

При модификации схемы входное сопротивление R z и конденсатор CP1 не следует припаивать, а вместо них ставить два резистора с удвоенным значением вместе с их разделительными конденсаторами.Рис. 7: Модификация входа фильтра для получения стерео входа. R z и CP1 должны быть заменены двумя резисторами, включенными параллельно с двойным значением, вместе с их разделительными конденсаторами.

4 — Конструкция: каскад развязки и поляризации

Первый каскад схемы представляет собой неинвертирующий усилитель, который обеспечивает развязку входных напряжений фильтра и смещение сигнала путем суммирования половины напряжения питания.В традиционном неинвертирующем усилителе V IN подключен непосредственно к неинвертирующему выводу операционного усилителя; в этой конфигурации усиление составляет: В этом случае V IN — это напряжение после резистивной сети, составленной из R 1 , R 2 и R z . Чтобы вычислить V IN1 , мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов.Напряжение будет суммой двух элементов: компонента V 1 IN , связанного с входным напряжением V IN , и V 1 alim , полученного из напряжения источника питания V alim . :

Чтобы найти значение V 1 alim , мы можем рассматривать конденсатор C P1 как разомкнутую цепь, так как V alim — это постоянное напряжение: В то время как для определения напряжения V 1 IN мы можем считать V alim = 0 В, и поэтому мы можем заменить источник питания коротким замыканием (как того требует метод наложения): Суммируя два результата, получаем:

Коэффициент усиления неинвертирующего усилителя не зависит от сопротивлений, которые появляются в выражении V IN1 , и поэтому для простоты мы можем положить его равным константе: Таким образом, общий коэффициент усиления неинвертирующего каскада составляет:

4.1 — Выбор значений компонентов

Чтобы найти значения компонентов, мы можем сделать некоторые краткие соображения: мы решаем, что напряжение V IN сообщается без изменений на выходе; для правильной поляризации сигнала необходимо суммировать половину напряжения источника питания с V IN ; наконец, мы выбрали α = 2, поскольку это позволяет нам использовать R F = R G . Теперь мы можем написать систему уравнений на основе коэффициентов усиления V IN e V alim : И, решая ее, получаем: Чтобы завершить информацию о системе, мы можем вычислить входное сопротивление всей цепи: Выбирая R 2 = 33 кОм и учитывая приближение серии E12, мы получаем хорошие значения: R 1 = 100 кОм, R z = 22 кОм, R в = 63 кОм.

4.2 — Конденсаторы развязывающие

Конденсатор C P1 блокирует ток поляризации цепи, поэтому он не течет в устройство, подключенное ко входу. Другими словами, это фильтр верхних частот со следующей частотой среза: Мы предполагаем, что частота среза этого фильтра намного ниже минимальной рабочей частоты схемы, например 1 Гц. Поскольку R в = 66 кОм, получаем C = 2,5 мкФ.Конденсатор емкостью 47 мкФ более чем достаточен для развязки. Аналогичные соображения можно сделать для C P2 , заменив на R в сопротивление нагрузки; это сопротивление будет довольно высоким, так как это вход усилителя.

5 — Конструкция: фильтр

Следующий этап — настоящий фильтр. В Интернете существует множество доказательств для вычисления его передаточной функции, среди которых одно из Википедии: топология Саллена-Ки. Вот: где R P — значение, принимаемое потенциометром P 1 .Анализируя этот многочлен, можно извлечь некоторые математические выражения, полезные в процессе проектирования.

5.1 — Расчетные уравнения

Если знаменатель имеет два действительных полюса, диаграмма Боде передаточной функции начнет понижаться на первом полюсе с наклоном -20 дБ / декада; на втором полюсе крутизна уменьшится до конечного значения -40 дБ / декада. Если, наоборот, знаменатель имеет два полюса комплексного сопряжения, будет присутствовать только одна частота среза с асимптотическим наклоном -40 дБ / декада.Это лучшее состояние для фильтра. Чтобы получить это с математической точки зрения, мы предполагаем, что знаменатель имеет отрицательный дискриминант: В этом случае частота среза равна:

Для определения размера компонентов фильтра мы можем использовать выражение его частоты среза. Когда потенциометр находится в конце или в начале, R P будет R до , что является общим сопротивлением потенциометра, или будет 0 Ом. В этих двух случаях результирующие частоты среза будут соответствовать минимальному или максимальному допустимому, то есть f 0 = 20 Гц и f 1 = 200 Гц.Формула частоты среза сводится к: Подставляя предельные частоты и решая систему уравнений, составленную из двух предыдущих уравнений, получаем:

Другое расчетное условие может быть получено с помощью выражения добротности. Если передаточная функция имеет комплексно сопряженные полюса, может возникнуть резонансный пик на частоте среза. Чтобы удалить этот пик, необходимо ограничить добротность фильтра Q:

5.2 — Графический выбор значений компонентов

Вернемся к полезным уравнениям, написанным до сих пор: По порядку, это уравнение, полученное из минимальной и максимальной частоты среза, условия дискриминанта для наличия комплексно сопряженных полюсов и условия добротности для предотвращения резонансных пиков.

Первое из трех уравнений содержит все значения компонентов, которые необходимо вычислить. Чтобы выбрать их легко и интуитивно, кривая была построена графически, задав параметры C 1 e C 2 , R A по оси абсцисс и R B по оси ординат. На том же графике область, где верно первое неравенство об отрицательном дискриминанте, была окрашена в зеленый и желтый цвета; область, окрашенная только зеленым цветом, — это место, где проверяется второе неравенство об ограничении добротности.Два неравенства оцениваются при условии, что потенциометр имеет максимальное значение, то есть R P = R до = 99R A . Окончательный график, построенный с помощью Производного 6, показан на следующем рисунке для C 1 = 4,7 мкФ и C 2 = 100 нФ: Рис. 8: График, используемый на этапе проектирования для выбора компонентов фильтра. Установив параметрические значения для C 1 и C 2 , можно построить график.Значения R A и R B можно выбрать в зеленой зоне, то есть в зоне, где справедливы оба неравенства. Значения, например, следующие: R A = 1,2 кОм, R B = 1,2 кОм, R до = 120 кОм.

Библиография и другие документы

  1. Пассивный фильтр нижних частот сабвуфера
  2. Топология Саллена-Ки
  3. Европейский стандарт Eurocard
  4. Визуальный анализатор
  5. LTSpice
Низкочастотный сабвуфер

— купить низкочастотный сабвуфер с бесплатной доставкой на AliExpress

Отличные новости !!! Вы попали в нужное место для низкочастотного сабвуфера.К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний низкочастотный сабвуфер в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели низкочастотный сабвуфер на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в низкочастотном сабвуфере и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести low-pass subwoofer по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *